File size: 7,272 Bytes
7466a89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
---
library_name: transformers
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: OpenELM-1_1B-DPO-full-max-reward-most-similar
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# OpenELM-1_1B-DPO-full-max-reward-most-similar

This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4525
- Rewards/chosen: -5.5938
- Rewards/rejected: -6.125
- Rewards/accuracies: 0.5234
- Rewards/margins: 0.5078
- Logps/rejected: -900.0
- Logps/chosen: -880.0
- Logits/rejected: -16.5
- Logits/chosen: -16.75

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.0972        | 0.1047 | 100  | 0.7389          | -1.3516        | -1.5781          | 0.5527             | 0.2207          | -446.0         | -454.0       | -13.625         | -13.75        |
| 0.0661        | 0.2094 | 200  | 0.9071          | -2.4219        | -2.7969          | 0.5527             | 0.3711          | -568.0         | -560.0       | -12.6875        | -12.9375      |
| 0.0937        | 0.3141 | 300  | 0.9646          | -3.0469        | -3.375           | 0.5156             | 0.3184          | -624.0         | -624.0       | -14.6875        | -15.0         |
| 0.183         | 0.4188 | 400  | 0.9573          | -2.9688        | -3.0625          | 0.5                | 0.0898          | -596.0         | -616.0       | -13.875         | -14.125       |
| 0.0827        | 0.5236 | 500  | 1.1730          | -3.7344        | -4.125           | 0.4902             | 0.3887          | -700.0         | -692.0       | -12.5625        | -12.875       |
| 0.07          | 0.6283 | 600  | 1.0648          | -3.0           | -3.2656          | 0.5176             | 0.2695          | -616.0         | -620.0       | -19.125         | -19.0         |
| 0.0789        | 0.7330 | 700  | 0.8502          | -2.8438        | -2.9531          | 0.5078             | 0.0996          | -584.0         | -604.0       | -12.0           | -12.5         |
| 0.061         | 0.8377 | 800  | 1.2018          | -3.9531        | -4.2188          | 0.5156             | 0.2578          | -708.0         | -712.0       | -17.375         | -17.625       |
| 0.0536        | 0.9424 | 900  | 1.0159          | -3.6875        | -3.8125          | 0.5312             | 0.1299          | -672.0         | -688.0       | -18.0           | -18.125       |
| 0.0051        | 1.0471 | 1000 | 1.0946          | -4.3438        | -4.6875          | 0.5156             | 0.3379          | -756.0         | -752.0       | -15.6875        | -16.125       |
| 0.0049        | 1.1518 | 1100 | 1.2330          | -4.7188        | -5.1875          | 0.5098             | 0.4648          | -808.0         | -788.0       | -17.75          | -17.875       |
| 0.0037        | 1.2565 | 1200 | 1.2518          | -4.75          | -5.25            | 0.5156             | 0.4707          | -812.0         | -796.0       | -18.5           | -18.375       |
| 0.0122        | 1.3613 | 1300 | 1.0438          | -3.9688        | -4.3125          | 0.5312             | 0.3477          | -720.0         | -716.0       | -18.25          | -18.375       |
| 0.0082        | 1.4660 | 1400 | 1.2435          | -4.75          | -5.0625          | 0.5078             | 0.3203          | -796.0         | -792.0       | -16.875         | -17.125       |
| 0.0039        | 1.5707 | 1500 | 1.2731          | -4.875         | -5.2812          | 0.5039             | 0.4023          | -816.0         | -808.0       | -15.3125        | -15.75        |
| 0.0021        | 1.6754 | 1600 | 1.3171          | -4.875         | -5.2812          | 0.5098             | 0.4160          | -820.0         | -808.0       | -15.8125        | -16.125       |
| 0.0146        | 1.7801 | 1700 | 1.2652          | -4.625         | -5.0312          | 0.5020             | 0.4141          | -792.0         | -780.0       | -16.0           | -16.125       |
| 0.0034        | 1.8848 | 1800 | 1.2840          | -4.6875        | -4.9688          | 0.5234             | 0.3027          | -788.0         | -788.0       | -16.0           | -16.25        |
| 0.0031        | 1.9895 | 1900 | 1.2655          | -4.5312        | -4.8438          | 0.5117             | 0.3008          | -772.0         | -772.0       | -16.125         | -16.25        |
| 0.0007        | 2.0942 | 2000 | 1.3138          | -4.875         | -5.25            | 0.5078             | 0.3691          | -812.0         | -804.0       | -16.5           | -16.625       |
| 0.0209        | 2.1990 | 2100 | 1.3850          | -5.25          | -5.6562          | 0.5117             | 0.4258          | -856.0         | -844.0       | -16.75          | -16.875       |
| 0.0007        | 2.3037 | 2200 | 1.4692          | -5.5625        | -6.0625          | 0.5234             | 0.4980          | -896.0         | -876.0       | -16.625         | -16.875       |
| 0.0008        | 2.4084 | 2300 | 1.5070          | -5.8125        | -6.3438          | 0.5176             | 0.5312          | -924.0         | -900.0       | -16.5           | -16.75        |
| 0.0003        | 2.5131 | 2400 | 1.4649          | -5.625         | -6.125           | 0.5234             | 0.5039          | -900.0         | -880.0       | -16.625         | -16.75        |
| 0.0003        | 2.6178 | 2500 | 1.4368          | -5.5312        | -6.0312          | 0.5176             | 0.4980          | -892.0         | -872.0       | -16.5           | -16.75        |
| 0.0007        | 2.7225 | 2600 | 1.4452          | -5.5625        | -6.0938          | 0.5215             | 0.5039          | -896.0         | -876.0       | -16.5           | -16.75        |
| 0.0009        | 2.8272 | 2700 | 1.4519          | -5.5938        | -6.125           | 0.5234             | 0.5078          | -900.0         | -880.0       | -16.5           | -16.75        |
| 0.0005        | 2.9319 | 2800 | 1.4525          | -5.5938        | -6.125           | 0.5234             | 0.5078          | -900.0         | -880.0       | -16.5           | -16.75        |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.3.0
- Datasets 2.21.0
- Tokenizers 0.19.1