File size: 7,252 Bytes
b316e46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
---
library_name: transformers
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: OpenELM-1_1B-DPO-full-self-improve
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# OpenELM-1_1B-DPO-full-self-improve

This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 13.7610
- Rewards/chosen: -51.0
- Rewards/rejected: -46.75
- Rewards/accuracies: 0.4570
- Rewards/margins: -4.3438
- Logps/rejected: -4960.0
- Logps/chosen: -5440.0
- Logits/rejected: 1.8125
- Logits/chosen: 0.8477

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.2459        | 0.1047 | 100  | 3.8620          | -12.0625       | -10.5            | 0.4531             | -1.5391         | -1344.0        | -1528.0      | -5.5625         | -5.9688       |
| 0.1787        | 0.2094 | 200  | 4.2236          | -13.0625       | -11.1875         | 0.4434             | -1.9141         | -1408.0        | -1624.0      | -1.0547         | -1.8828       |
| 0.1064        | 0.3141 | 300  | 5.5584          | -19.5          | -16.875          | 0.4336             | -2.5156         | -1984.0        | -2256.0      | 2.6406          | 1.8281        |
| 0.1114        | 0.4188 | 400  | 5.9626          | -21.625        | -19.5            | 0.4473             | -2.1094         | -2240.0        | -2480.0      | -2.3906         | -3.2969       |
| 0.0803        | 0.5236 | 500  | 6.1040          | -24.75         | -23.375          | 0.4922             | -1.4141         | -2624.0        | -2800.0      | 3.6562          | 2.4844        |
| 0.0999        | 0.6283 | 600  | 5.5224          | -22.5          | -20.375          | 0.4395             | -2.125          | -2336.0        | -2576.0      | 2.6719          | 1.2969        |
| 0.0767        | 0.7330 | 700  | 5.9968          | -24.25         | -22.5            | 0.4648             | -1.6953         | -2544.0        | -2736.0      | 0.5781          | -0.4414       |
| 0.0891        | 0.8377 | 800  | 4.9921          | -20.875        | -19.125          | 0.4570             | -1.7188         | -2208.0        | -2400.0      | -0.3652         | -1.375        |
| 0.0907        | 0.9424 | 900  | 3.9869          | -17.25         | -16.125          | 0.4785             | -1.1328         | -1896.0        | -2040.0      | -2.0781         | -3.0469       |
| 0.028         | 1.0471 | 1000 | 7.5994          | -27.75         | -26.0            | 0.4824             | -1.7422         | -2896.0        | -3104.0      | -1.6328         | -2.6094       |
| 0.0329        | 1.1518 | 1100 | 8.8766          | -34.5          | -33.0            | 0.4707             | -1.7344         | -3584.0        | -3776.0      | 0.8086          | -0.2539       |
| 0.0288        | 1.2565 | 1200 | 7.4045          | -30.25         | -27.875          | 0.4531             | -2.3438         | -3072.0        | -3344.0      | 0.7969          | -0.1514       |
| 0.0403        | 1.3613 | 1300 | 6.6099          | -27.75         | -25.75           | 0.4531             | -1.9844         | -2864.0        | -3088.0      | -2.9688         | -3.8125       |
| 0.0286        | 1.4660 | 1400 | 12.4327         | -43.75         | -39.75           | 0.4688             | -3.875          | -4288.0        | -4672.0      | 0.9492          | -0.0228       |
| 0.0237        | 1.5707 | 1500 | 9.6342          | -37.0          | -33.75           | 0.4414             | -3.25           | -3664.0        | -4016.0      | 1.4141          | 0.3789        |
| 0.0231        | 1.6754 | 1600 | 9.6624          | -38.25         | -34.75           | 0.4531             | -3.5156         | -3776.0        | -4160.0      | 1.1016          | 0.1680        |
| 0.0199        | 1.7801 | 1700 | 13.2106         | -48.5          | -43.75           | 0.4512             | -4.75           | -4672.0        | -5152.0      | 1.8438          | 0.9062        |
| 0.0202        | 1.8848 | 1800 | 10.3211         | -41.0          | -37.75           | 0.4492             | -3.2344         | -4080.0        | -4416.0      | 0.6641          | -0.2930       |
| 0.0305        | 1.9895 | 1900 | 9.0914          | -35.5          | -33.25           | 0.4609             | -2.0625         | -3616.0        | -3856.0      | -0.5703         | -1.5          |
| 0.0093        | 2.0942 | 2000 | 12.3840         | -45.75         | -42.0            | 0.4512             | -3.5938         | -4480.0        | -4864.0      | 0.7969          | -0.1797       |
| 0.006         | 2.1990 | 2100 | 13.6169         | -49.5          | -45.25           | 0.4531             | -4.2188         | -4832.0        | -5280.0      | 1.4062          | 0.4277        |
| 0.0119        | 2.3037 | 2200 | 12.2264         | -45.75         | -41.75           | 0.4531             | -3.9844         | -4480.0        | -4896.0      | 1.4453          | 0.4785        |
| 0.0105        | 2.4084 | 2300 | 12.7440         | -47.5          | -43.25           | 0.4531             | -4.125          | -4608.0        | -5056.0      | 1.4062          | 0.4570        |
| 0.0077        | 2.5131 | 2400 | 13.4844         | -50.25         | -45.75           | 0.4512             | -4.3125         | -4864.0        | -5344.0      | 1.7656          | 0.8125        |
| 0.0149        | 2.6178 | 2500 | 13.7760         | -51.0          | -46.75           | 0.4551             | -4.3438         | -4960.0        | -5408.0      | 1.6562          | 0.7031        |
| 0.0045        | 2.7225 | 2600 | 14.2584         | -52.75         | -48.25           | 0.4551             | -4.5            | -5120.0        | -5600.0      | 1.9766          | 1.0078        |
| 0.0105        | 2.8272 | 2700 | 13.8720         | -51.5          | -47.0            | 0.4551             | -4.375          | -4992.0        | -5472.0      | 1.8203          | 0.8516        |
| 0.0065        | 2.9319 | 2800 | 13.7610         | -51.0          | -46.75           | 0.4570             | -4.3438         | -4960.0        | -5440.0      | 1.8125          | 0.8477        |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.3.0
- Datasets 3.0.0
- Tokenizers 0.19.1