--- library_name: transformers base_model: data/OpenELM-1_1B-SFT tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: OpenELM-1_1B-DPO results: [] --- # OpenELM-1_1B-DPO This model is a fine-tuned version of [data/OpenELM-1_1B-SFT](https://huggingface.co/data/OpenELM-1_1B-SFT) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 1.0009 - Rewards/chosen: -14.5625 - Rewards/rejected: -17.125 - Rewards/accuracies: 0.7188 - Rewards/margins: 2.6094 - Logps/rejected: -632.0 - Logps/chosen: -612.0 - Logits/rejected: -13.0 - Logits/chosen: -13.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 32 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.7494 | 1.0 | 1911 | 0.7879 | -11.6875 | -12.8125 | 0.6797 | 1.1797 | -548.0 | -552.0 | -12.8125 | -12.5625 | | 0.0999 | 2.0 | 3822 | 0.8019 | -14.125 | -15.9375 | 0.6992 | 1.8125 | -608.0 | -604.0 | -13.0625 | -13.0 | | 0.011 | 3.0 | 5733 | 1.0009 | -14.5625 | -17.125 | 0.7188 | 2.6094 | -632.0 | -612.0 | -13.0 | -13.0 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.3.0 - Datasets 2.21.0 - Tokenizers 0.19.1