File size: 17,711 Bytes
e048d40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import pandas as pd
import numpy as np
import os
from fuson_plm.utils.logging import open_logfile, log_update
from fuson_plm.utils.constants import DELIMITERS, VALID_AAS
from fuson_plm.utils.data_cleaning import check_columns_for_listlike, find_invalid_chars
from fuson_plm.benchmarking.idr_prediction.plot import plot_all_values_hist_grid, plot_all_train_val_test_values_hist_grid
def process_raw_albatross(df):
# return a version of the df with first column split, duplicates cleaned,columns checked for weird characters and invalids
# first, look at the splits
split_str = df['Split'].value_counts().reset_index().rename(columns={'index': 'Split','Split': 'count'})
tot_prots = sum(split_str['count'])
split_str['pcnt'] = round(100*split_str['count']/tot_prots,2)
split_str = split_str.to_string(index=False)
split_str = "\t\t" + split_str.replace("\n","\n\t\t")
log_update(f"\tTotal proteins: {tot_prots}\n\tSplits:\n{split_str}")
# format: IDR_19076_tr___A0A8M9PNM5___A0A8M9PNM5_DANRE
# or: synth_test_sequence0
df['temp'] = df['ID'].str.split("_")
df['ID'] = df['temp'].apply(lambda x: f"{x[0]}" if len(x)==1 else f"{x[0]}_{x[1]}" if len(x)<3 else f"{x[0]}_{x[1]}_{x[2]}")
# Not ever column has UniProt IDs and Names, so we have to allow np.nan if this info is missing.
df['UniProt_ID'] = df['temp'].apply(lambda x: x[5].strip() if len(x)>=5 else np.nan)
df['UniProt_Name'] = df['temp'].apply(lambda x: f"{x[8].strip()}_{x[9].strip()}" if len(x)>=8 else np.nan)
df = df.drop(columns=['temp'])
cols_to_check = list(df.columns)
cols_to_check.remove('Value') # don't check this one because it shouldn't be string
# Investigate the colimns we just created and make sure they don't have any invalid features.
# make sure value is float type
assert df['Value'].dtype == 'float64'
check_columns_for_listlike(df, cols_of_interest=cols_to_check, delimiters=DELIMITERS)
# Check for invalid AAs
df['invalid_chars'] = df['Sequence'].apply(lambda x: find_invalid_chars(x, VALID_AAS))
df[df['invalid_chars'].str.len()>0].sort_values(by='Sequence')
all_invalid_chars = set().union(*df['invalid_chars'])
log_update(f"\tchecking for invalid characters...\n\t\tset of all invalid characters discovered within train_df: {all_invalid_chars}")
# Assert no invalid AAs
assert (df['invalid_chars'].str.len()==0).all()
df = df.drop(columns=['invalid_chars'])
# Check for duplicates - if we find any, REMOVE them from train and keep them in test
duplicates = df[df.duplicated('Sequence')]['Sequence'].unique().tolist()
n_rows_with_duplicates = len(df[df['Sequence'].isin(duplicates)])
log_update(f"\t{len(duplicates)} duplicated sequences, corresponding to {n_rows_with_duplicates} rows")
# Look for distribution of duplicates WITHIN train, WITHIN test, and BETWEEN train and test
# Train only
duplicates = df.loc[
(df['Split']=='Train')
]
duplicates = duplicates[duplicates.duplicated('Sequence')]['Sequence'].unique().tolist()
n_rows_with_duplicates = len(df.loc[
(df['Sequence'].isin(duplicates)) &
(df['Split']=='Train')
])
log_update(f"\t\twithin TRAIN only: {len(duplicates)} duplicated sequences, corresponding to {n_rows_with_duplicates} Train rows")
# Test only
duplicates = df.loc[
(df['Split']=='Test')
]
duplicates = duplicates[duplicates.duplicated('Sequence')]['Sequence'].unique().tolist()
n_rows_with_duplicates = len(df.loc[
(df['Sequence'].isin(duplicates)) &
(df['Split']=='Test')
])
log_update(f"\t\twithin TEST only: {len(duplicates)} duplicated sequences, corresponding to {n_rows_with_duplicates} Test rows")
# Between train and test
duplicates_df = df.groupby('Sequence').agg({
'Split': lambda x: ','.join(set(x))
}).reset_index()
duplicates_df = duplicates_df.loc[duplicates_df['Split'].str.contains(',')].reset_index(drop=True)
duplicates = duplicates_df['Sequence'].unique().tolist()
n_rows_with_duplicates = len(df[df['Sequence'].isin(duplicates)])
log_update(f"\t\tduplicates in BOTH TRAIN AND TEST: {len(duplicates)} duplicated sequences, corresponding to {n_rows_with_duplicates} rows")
log_update(f"\t\tprinting portion of dataframe with train+test shared seqs:\n{duplicates_df.head(5)}")
log_update("\tGrouping by sequence, averaging values, and keeping any Train/Test duplicates in the Test set...")
df = df.replace(np.nan, '')
df = df.groupby('Sequence').agg(
Value=('Value', 'mean'),
Value_STD=('Value', 'std'),
IDs=('ID', lambda x: ','.join(x)),
UniProt_IDs=('UniProt_ID', lambda x: ','.join(x)),
UniProt_Names=('UniProt_Name', lambda x: ','.join(x)),
Split=('Split', lambda x: ','.join(x))
).reset_index()
for col in ['IDs','UniProt_IDs','UniProt_Names','Split']:
df[col] = df[col].apply(lambda x: [y for y in x.split(',')])
df[col] = df[col].apply(lambda x: ','.join(x))
df[col] = df[col].str.strip(',')
# make sure there are no commas left
assert len(df[df[col].str.contains(',,')])==0
# set Split to Test if test is in it
df['Split'] = df['Split'].apply(lambda x: 'Test' if 'Test' in x else 'Train')
# For anything that wasn't duplicated, Value_STD is nan
log_update("\tChecking coefficients of variation for averaged rows")
# calculate coefficient of variation, should be < 10
df['Value_CV'] = 100*df['Value_STD']/df['Value']
log_update(f"\t\tTotal rows with coefficient of variation (CV)\n\t\t\t<=10%: {len(df[df['Value_CV']<=10])}\n\t\t\t>10%: {len(df[df['Value_CV']>10])}\n\t\t\t>20%: {len(df[df['Value_CV']>20])}")
# Ensure there are no duplicates
assert len(df[df['Sequence'].duplicated()])==0
log_update(f"\tNo remaining duplicates: {len(df[df['Sequence'].duplicated()])==0}")
# Print the final distribution of train and test values
split_str = df['Split'].value_counts().reset_index().rename(columns={'index': 'Split','Split': 'count'})
tot_prots = sum(split_str['count'])
split_str['pcnt'] = round(100*split_str['count']/tot_prots,2)
split_str = split_str.to_string(index=False)
split_str = "\t\t" + split_str.replace("\n","\n\t\t")
log_update(f"\tTotal proteins: {tot_prots}\n\tSplits:\n{split_str}")
return df
def combine_albatross_seqs(asph, scaled_re, scaled_rg, scaling_exp):
log_update("\nCombining all four dataframes into one file of ALBATROSS sequences")
asph = asph[['Sequence','Value','IDs','UniProt_IDs','UniProt_Names','Split']].rename(columns={'Value':'asph'})
scaled_re = scaled_re[['Sequence','Value','IDs','UniProt_IDs','UniProt_Names','Split']].rename(columns={'Value':'scaled_re'})
scaled_rg = scaled_rg[['Sequence','Value','IDs','UniProt_IDs','UniProt_Names','Split']].rename(columns={'Value':'scaled_rg'})
scaling_exp = scaling_exp[['Sequence','Value','IDs','UniProt_IDs','UniProt_Names','Split']].rename(columns={'Value':'scaling_exp'})
combined = asph.merge(scaled_re, on='Sequence',how='outer',suffixes=('_asph', '_scaledre'))\
.merge(scaled_rg, on='Sequence',how='outer',suffixes=('_scaledre', '_scaledrg'))\
.merge(scaling_exp, on='Sequence',how='outer',suffixes=('_scaledrg', '_scalingexp')).fillna('')
# Make sure something that's in train for one is in train for all, and not test
combined['IDs'] = combined['IDs_asph']+','+combined['IDs_scaledre']+','+combined['IDs_scaledrg']+','+combined['IDs_scalingexp']
combined['UniProt_IDs'] = combined['UniProt_IDs_asph']+','+combined['UniProt_IDs_scaledre']+','+combined['UniProt_IDs_scaledrg']+','+combined['UniProt_IDs_scalingexp']
combined['UniProt_Names'] = combined['UniProt_Names_asph']+','+combined['UniProt_Names_scaledre']+','+combined['UniProt_Names_scaledrg']+','+combined['UniProt_Names_scalingexp']
combined['Split'] = combined['Split_asph']+','+combined['Split_scaledre']+','+combined['Split_scaledrg']+','+combined['Split_scalingexp']
# Make the lists clean
for col in ['IDs','UniProt_IDs','UniProt_Names','Split']:
combined[col] = combined[col].apply(lambda x: [y.strip() for y in x.split(',') if len(y)>0])
combined[col] = combined[col].apply(lambda x: ','.join(set(x)))
combined[col] = combined[col].str.strip(',')
# make sure there are no commas left
assert len(combined[combined[col].str.contains(',,')])==0
combined = combined[['Sequence','IDs','UniProt_IDs','UniProt_Names','Split','asph','scaled_re','scaled_rg','scaling_exp']] # drop unneeded merge relics
combined = combined.replace('',np.nan)
# Make sure there are no sequences where split is both train and test
log_update("\tChecking for any cases where a protein is Train for one IDR prediction task and Test for another (should NOT happen!)")
duplicates_df = combined.groupby('Sequence').agg({
'Split': lambda x: ','.join(set(x))
}).reset_index()
duplicates_df = duplicates_df.loc[duplicates_df['Split'].str.contains(',')].reset_index(drop=True)
duplicates = duplicates_df['Sequence'].unique().tolist()
n_rows_with_duplicates = len(combined[combined['Sequence'].isin(duplicates)])
log_update(f"\t\tsequences in BOTH TRAIN AND TEST: {len(duplicates)} sequences, corresponding to {n_rows_with_duplicates} rows")
if len(duplicates)>0:
log_update(f"\t\tprinting portion of assert len(combined[combined['asph'].notna()])==len(asph)dataframe with train+test shared seqs:\n{duplicates_df.head(5)}")
# Now, get rid of duplicates
combined = combined.drop_duplicates().reset_index(drop=True)
duplicates = combined[combined.duplicated('Sequence')]['Sequence'].unique().tolist()
log_update(f"\tDropped duplicates.\n\tTotal duplicate sequences: {len(duplicates)}\n\tTotal sequences: {len(combined)}")
assert len(duplicates)==0
# See how many columns have multiple entries for each
log_update(f"\tChecking how many sequences have multiple of the following: ID, UniProt ID, UniProt Name")
for col in ['IDs','UniProt_IDs','UniProt_Names','Split']:
n_multiple = len(combined.loc[(combined[col].notna()) & (combined[col].str.contains(','))])
log_update(f"\t\t{col}: {n_multiple}")
# See how many entries there are of each cproperty (should match length of original database)
assert len(combined[combined['asph'].notna()])==len(asph)
assert len(combined[combined['scaled_re'].notna()])==len(scaled_re)
assert len(combined[combined['scaled_rg'].notna()])==len(scaled_rg)
assert len(combined[combined['scaling_exp'].notna()])==len(scaling_exp)
log_update("\tSequences with values for each property:")
for property in ['asph','scaled_re','scaled_rg','scaling_exp']:
log_update(f"\t\t{property}: {len(combined[combined[property].notna()])}")
log_update(f"\nPreview of combined database with columns: {combined.columns}\n{combined.head(10)}")
return combined
def main():
with open_logfile("data_cleaning_log.txt"):
# Read in all of the raw data
raw_data_folder = 'raw_data'
dtype_dict = {0:str,1:str,2:float}
rename_dict = {0:'ID',1:'Sequence',2:'Value'}
# Read in the test data
asph_test = pd.read_csv(f"{raw_data_folder}/asph_nat_meth_test.tsv",sep=" ",dtype=dtype_dict,header=None).rename(columns=rename_dict)
scaled_re_test = pd.read_csv(f"{raw_data_folder}/scaled_re_nat_meth_test.tsv",sep="\t",dtype=dtype_dict,header=None).rename(columns=rename_dict)
scaled_rg_test = pd.read_csv(f"{raw_data_folder}/scaled_rg_nat_meth_test.tsv",sep="\t",dtype=dtype_dict,header=None).rename(columns=rename_dict)
scaling_exp_test = pd.read_csv(f"{raw_data_folder}/scaling_exp_nat_meth_test.tsv",sep=" ",dtype=dtype_dict,header=None).rename(columns=rename_dict)
# Read in the train data
asph_train = pd.read_csv(f"{raw_data_folder}/asph_bio_synth_training_data_cleaned_05_09_2023.tsv",sep=" ",dtype=dtype_dict,header=None).rename(columns=rename_dict)
scaled_re_train = pd.read_csv(f"{raw_data_folder}/scaled_re_bio_synth_training_data_cleaned_05_09_2023.tsv",sep="\t",dtype=dtype_dict,header=None).rename(columns=rename_dict)
scaled_rg_train = pd.read_csv(f"{raw_data_folder}/scaled_rg_bio_synth_training_data_cleaned_05_09_2023.tsv",sep="\t",dtype=dtype_dict,header=None).rename(columns=rename_dict)
scaling_exp_train = pd.read_csv(f"{raw_data_folder}/scaling_exp_bio_synth_training_data_cleaned_05_09_2023.tsv",sep=" ",dtype=dtype_dict,header=None).rename(columns=rename_dict)
# Concatenate - include columns for split
asph_test['Split'] = ['Test']*len(asph_test)
scaled_re_test['Split'] = ['Test']*len(scaled_re_test)
scaled_rg_test['Split'] = ['Test']*len(scaled_rg_test)
scaling_exp_test['Split'] = ['Test']*len(scaling_exp_test)
asph_train['Split'] = ['Train']*len(asph_train)
scaled_re_train['Split'] = ['Train']*len(scaled_re_train)
scaled_rg_train['Split'] = ['Train']*len(scaled_rg_train)
scaling_exp_train['Split'] = ['Train']*len(scaling_exp_train)
asph = pd.concat([asph_test, asph_train])
scaled_re = pd.concat([scaled_re_test, scaled_re_train])
scaled_rg = pd.concat([scaled_rg_test, scaled_rg_train])
scaling_exp = pd.concat([scaling_exp_test, scaling_exp_train])
log_update("Initial counts:")
log_update(f"\tAsphericity: total entries={len(asph)}, not nan entries={len(asph.loc[asph['Value'].notna()])}")
log_update(f"\tScaled re: total entries={len(scaled_re)}, not nan entries={len(scaled_re.loc[scaled_re['Value'].notna()])}")
log_update(f"\tScaled rg: total entries={len(scaled_rg)}, not nan entries={len(scaled_rg.loc[scaled_rg['Value'].notna()])}")
# change any scaled_rg rows with values less than 1 to np.nan, as done in the paper
scaled_rg = scaled_rg.loc[
scaled_rg['Value']>=1].reset_index(drop=True)
log_update(f"\t\tAfter dropping Rg values < 1: total entries={len(scaled_rg)}")
log_update(f"\tScaling exp: total entries={len(scaling_exp)}, not nan entries={len(scaling_exp.loc[scaling_exp['Value'].notna()])}")
# Process the raw data
log_update(f"Example raw download: asphericity\n{asph.head()}")
log_update(f"\nCleaning Asphericity")
asph = process_raw_albatross(asph)
log_update(f"\nProcessed data: asphericity\n{asph.head()}")
log_update(f"\nCleaning Scaled Re")
scaled_re = process_raw_albatross(scaled_re)
log_update(f"\nProcessed data: scaled re\n{scaled_re.head()}")
log_update(f"\nCleaning Scaled Rg")
scaled_rg = process_raw_albatross(scaled_rg)
log_update(f"\nProcessed data: scaled rg\n{scaled_rg.head()}")
log_update(f"\nCleaning Scaling Exp")
scaling_exp = process_raw_albatross(scaling_exp)
log_update(f"\nProcessed data: scaling exp\n{scaling_exp.head()}")
# Give some stats about each dataset
log_update("\nStats:")
log_update(f"# Asphericity sequences: {len(asph)}\n\tRange: {min(asph['Value']):.4f}-{max(asph['Value']):.4f}")
log_update(f"# Scaled Re sequences: {len(scaled_re)}\n\tRange: {min(scaled_re['Value']):.4f}-{max(scaled_re['Value']):.4f}")
log_update(f"# Scaled Rg sequences: {len(scaled_rg)}\n\tRange: {min(scaled_rg['Value']):.4f}-{max(scaled_rg['Value']):.4f}")
log_update(f"# Scaling Exponent sequences: {len(scaling_exp)}\n\tRange: {min(scaling_exp['Value']):.4f}-{max(scaling_exp['Value']):.4f}")
# Combine
combined = combine_albatross_seqs(asph, scaled_re, scaled_rg, scaling_exp)
# Save processed data
proc_folder = "processed_data"
os.makedirs(proc_folder,exist_ok=True)
combined.to_csv(f"{proc_folder}/all_albatross_seqs_and_properties.csv",index=False)
# Plot the data distribution and save it
values_dict = {
'Asphericity': asph['Value'].tolist(),
'End-to-End Distance (Re)': scaled_re['Value'].tolist(),
'Radius of Gyration (Rg)': scaled_rg['Value'].tolist(),
'Scaling Exponent': scaling_exp['Value'].tolist()
}
train_test_values_dict = {
'Asphericity': {
'train': asph[asph['Split']=='Train']['Value'].tolist(),
'test': asph[asph['Split']=='Test']['Value'].tolist()},
'End-to-End Distance (Re)': {
'train': scaled_re[scaled_re['Split']=='Train']['Value'].tolist(),
'test': scaled_re[scaled_re['Split']=='Test']['Value'].tolist()},
'Radius of Gyration (Rg)': {
'train': scaled_rg[scaled_rg['Split']=='Train']['Value'].tolist(),
'test': scaled_rg[scaled_rg['Split']=='Test']['Value'].tolist()},
'Scaling Exponent': {
'train': scaling_exp[scaling_exp['Split']=='Train']['Value'].tolist(),
'test': scaling_exp[scaling_exp['Split']=='Test']['Value'].tolist()},
}
plot_all_values_hist_grid(values_dict, save_path="processed_data/value_histograms.png")
plot_all_train_val_test_values_hist_grid(train_test_values_dict, save_path="processed_data/train_test_value_histograms.png")
if __name__ == "__main__":
main() |