File size: 33,104 Bytes
1e6a1f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 |
## Imports
import pandas as pd
import numpy as np
import os
import sys
import pickle
from fuson_plm.utils.constants import TCGA_CODES, FODB_CODES, VALID_AAS, DELIMITERS
from fuson_plm.utils.logging import open_logfile, log_update
from fuson_plm.utils.data_cleaning import clean_rows_and_cols, check_columns_for_listlike, check_item_for_listlike, find_delimiters, find_invalid_chars
from fuson_plm.data.config import CLEAN
def clean_fusionpdb(fusionpdb: pd.DataFrame, tcga_codes, delimiters, valid_aas) -> pd.DataFrame:
"""
Return a cleaned version of the raw FusionPDB database, downloaded from FusionPDB website "Level 1" link
Args:
fusionpdb (pd.DataFrame): The raw FusionPDB database
delimiters: delimiters to check for
Returns:
pd.DataFrame: A cleaned version of the raw FusionPDB database with no duplicate sequences.
Columns:
- `aa_seq`: amino acid sequence of fusion oncoprotein. each is unique.
- `n_fusiongenes`: total number of fusion genes with this amino acid sequence.
- `fusiongenes`: comma-separated list of fusion genes (hgene::tgene) for this sequence. e.g., "MINK1::SPNS3,UBE2G1::SPNS3"
- `cancers`: comma-separated list of cancer types for this sequence. e.g., "breast invasive carcinoma,stomach adenocarcinoma"
- `primary_source`: source FusionPDB pulled the data from
- `secondary_source`:
"""
# Process and clean FusionPDB database
log_update("Cleaning FusionPDB raw data")
# FusionPDB is downloaded with no column labels. Fill in column labels here.
log_update(f"\tfilling in column names...")
fusionpdb = fusionpdb.rename(columns={
0: 'ORF_type',
1: 'hgene_ens',
2: 'tgene_ens',
3: '', # no data in this column
4: 'primary_source', # database FusionPDB pulled from
5: 'cancer',
6: 'database_id',
7: 'hgene',
8: 'hgene_chr',
9: 'hgene_bp',
10: 'hgene_strand',
11: 'tgene',
12: 'tgene_chr',
13: 'tgene_bp',
14: 'tgene_strand',
15: 'bp_dna_transcript',
16: 'dna_transcript',
17: 'aa_seq_len',
18: 'aa_seq',
19: 'predicted_start_dna_transcript',
20: 'predicted_end_dna_transcript'
})
# Clean rows and columns
fusionpdb = clean_rows_and_cols(fusionpdb)
# Check for list-like qualities in the columns we plan to keep
cols_of_interest = ['hgene','tgene','cancer','aa_seq','primary_source']
listlike_dict = check_columns_for_listlike(fusionpdb, cols_of_interest, delimiters)
# Add a new column for fusiongene, which combines hgene::tgene. e.g., EWS::FLI1
log_update("\tadding a column for fusiongene = hgene::tgene")
fusionpdb['fusiongene'] = (fusionpdb['hgene'] + '::' + fusionpdb['tgene']).astype(str)
# Make 'cancer' column type string to ease downstream processing
log_update("\tcleaning the cancer column...")
# turn '.' and nan entries into empty string
fusionpdb = fusionpdb.replace('.',np.nan)
fusionpdb['cancer'] = fusionpdb['cancer'].astype(str).replace('nan','')
log_update("\t\tconverting cancer acronyms into full cancer names...")
fusionpdb['cancer'] = fusionpdb['cancer'].apply(lambda x: tcga_codes[x].lower() if x in tcga_codes else x.lower())
log_update("\t\tconverting all lists into comma-separated...")
fusionpdb['cancer'] = fusionpdb['cancer'].str.replace(';',',')
fusionpdb['cancer'] = fusionpdb['cancer'].str.replace(', ', ',')
fusionpdb['cancer'] = fusionpdb['cancer'].str.strip()
fusionpdb['cancer'] = fusionpdb['cancer'].str.strip(',')
log_update(f"\t\tchecking for delimiters in the cleaned column...")
check_columns_for_listlike(fusionpdb, ['cancer'], delimiters)
# Now that we've dealt with listlike instances, make dictionary of hgene and tgene to their ensembl strings
log_update("\tcreating dictionary of head and tail genes mapped to Ensembl IDs, to be used later for aquiring UniProtAcc for head and tail genes (needed for BLAST analysis)")
hgene_to_ensembl_dict = fusionpdb.groupby('hgene').agg(
{
'hgene_ens': lambda x: ','.join(set(x))
}
).reset_index()
hgene_to_ensembl_dict = dict(zip(hgene_to_ensembl_dict['hgene'],hgene_to_ensembl_dict['hgene_ens']))
tgene_to_ensembl_dict = fusionpdb.groupby('tgene').agg(
{
'tgene_ens': lambda x: ','.join(set(x))
}
).reset_index()
tgene_to_ensembl_dict = dict(zip(tgene_to_ensembl_dict['tgene'],tgene_to_ensembl_dict['tgene_ens']))
# now, we might have some of the same heads and tails being mapped to different things
all_keys = set(hgene_to_ensembl_dict.keys()).union(set(tgene_to_ensembl_dict.keys()))
gene_to_ensembl_dict = {}
for k in all_keys:
ens = hgene_to_ensembl_dict.get(k,'') + ',' + tgene_to_ensembl_dict.get(k,'')
ens = ','.join(set(list(ens.strip(',').split(','))))
gene_to_ensembl_dict[k] = ens
os.makedirs("head_tail_data",exist_ok=True)
with open(f"head_tail_data/gene_to_ensembl_dict.pkl", "wb") as f:
pickle.dump(gene_to_ensembl_dict, f)
total_unique_ens_ids = list(gene_to_ensembl_dict.values())
total_unique_ens_ids = set(",".join(total_unique_ens_ids).split(","))
log_update(f"\t\tTotal unique head/tail genes: {len(gene_to_ensembl_dict)}\n\t\tTotal unique ensembl ids: {len(total_unique_ens_ids)}")
# To deal with duplicate sequences, group FusionPDB by sequence and concatenate fusion gene names, cancer types, and primary source
log_update(f"\tchecking FusionPDB for duplicate protein sequences...\n\t\toriginal size: {len(fusionpdb)}")
duplicates = fusionpdb[fusionpdb.duplicated('aa_seq')]['aa_seq'].unique().tolist()
n_fgenes_with_duplicates = len(fusionpdb[fusionpdb['aa_seq'].isin(duplicates)]['fusiongene'].unique())
n_rows_with_duplicates = len(fusionpdb[fusionpdb['aa_seq'].isin(duplicates)])
log_update(f"\t\t{len(duplicates)} duplicated sequences, corresponding to {n_rows_with_duplicates} rows and {n_fgenes_with_duplicates} distinct fusiongenes")
log_update(f"\tgrouping FusionPDB by amino acid sequence...")
# Merge step
fusionpdb = pd.merge(
fusionpdb.groupby('aa_seq').agg({
'fusiongene': lambda x: x.nunique()}).reset_index().rename(columns={'fusiongene':'n_fusiongenes'}),
fusionpdb.groupby('aa_seq').agg({
'fusiongene': lambda x: ','.join(x),
'cancer': lambda x: ','.join(x),
'primary_source': lambda x: ','.join(x)}).reset_index().rename(columns={'fusiongene':'fusiongenes', 'cancer': 'cancers', 'primary_source':'primary_sources'}).reset_index(drop=True).rename(columns={'fusiongene':'fusiongenes'}),
on='aa_seq'
)
# Turn each aggregated column into sorted, comma-separated list
fusionpdb['fusiongenes'] = fusionpdb['fusiongenes'].apply(lambda x: (',').join(sorted(set(x.split(','))))).str.strip(',')
fusionpdb['cancers'] = fusionpdb['cancers'].apply(lambda x: (',').join(sorted(set(x.split(','))))).str.strip(',')
fusionpdb['primary_sources'] = fusionpdb['primary_sources'].apply(lambda x: (',').join(sorted(set(x.split(','))))).str.strip(',')
# Count and display sequences with >1 fusion gene
duplicates = fusionpdb.loc[fusionpdb['n_fusiongenes']>1]['aa_seq'].tolist()
log_update(f"\t\treorganized database contains {len(duplicates)} proteins with >1 fusion gene")
log_update(f"\t\treorganized database contains {len(fusionpdb)} unique oncofusion sequences")
# Find invalid amino acids for each sequence and log_update the results
fusionpdb['invalid_chars'] = fusionpdb['aa_seq'].apply(lambda x: find_invalid_chars(x, valid_aas))
fusionpdb[fusionpdb['invalid_chars'].str.len()>0].sort_values(by='aa_seq')
all_invalid_chars = set().union(*fusionpdb['invalid_chars'])
log_update(f"\tchecking for invalid characters...\n\t\tset of all invalid characters discovered within FusionPDB: {all_invalid_chars}")
# Filter out any sequences with invalid amino acids
fusionpdb = fusionpdb[fusionpdb['invalid_chars'].str.len()==0].reset_index(drop=True).drop(columns=['invalid_chars'])
log_update(f"\tremoving invalid characters...\n\t\tremaining sequences with valid AAs only: {len(fusionpdb)}")
# Add a column for secondary source - FusionPDB.
fusionpdb['secondary_source'] = ['FusionPDB']*len(fusionpdb)
# Final checks of database cleanliness
log_update(f"\tperforming final checks on cleaned FusionPDB...")
duplicates = len(fusionpdb.loc[fusionpdb['aa_seq'].duplicated()]['aa_seq'].tolist())
log_update(f"\t\t{duplicates} duplicate sequences")
invalids=0
for x in all_invalid_chars:
invalids += len(fusionpdb.loc[fusionpdb['aa_seq'].str.contains(x)])
log_update(f"\t\t{invalids} proteins containing invalid chracters")
all_unique_seqs = len(fusionpdb)==len(fusionpdb['aa_seq'].unique())
log_update(f"\t\tevery row contains a unique oncofusion sequence: {all_unique_seqs}")
return fusionpdb
def clean_fodb(fodb: pd.DataFrame, fodb_codes, delimiters, valid_aas) -> pd.DataFrame:
"""
Cleans the FOdb database
Args:
fodb (pd.DataFrame): raw FOdb.
fodb_codes:
delimiters:
valid_aas:
Returns:
pd.DataFrame: a cleaned version of FOdb with no duplicate sequences.
Columns:
- `aa_seq`: amino acid sequence of fusion oncoprotein. each is unique.
- `n_fusiongenes`: total number of fusion genes with this amino acid sequence.
- `fusiongenes`: comma-separated list of fusion genes (hgene::tgene) for this sequence. e.g., "MINK1::SPNS3,UBE2G1::SPNS3"
- `cancers`: comma-separated list of cancer types for this sequence. e.g., "breast invasive carinoma,stomach adenocarcinoma"
- `primary_source`: source FOdb pulled the data from
- `secondary_source`: FOdb
"""
log_update("Cleaning FOdb raw data")
fodb['FO_Name'] = fodb['FO_Name'].apply(lambda x: x.split("_")[0]+"::"+x.split("_")[1])
fodb = fodb.rename(columns={'Sequence_Source': 'primary_source', 'FO_Name': 'fusiongene', 'AA_Sequence': 'aa_seq'})
fodb.head()
# Clean rows and columns
fodb = clean_rows_and_cols(fodb)
# HEY1::NCOA2 has a "-" on the end by mistake. Replace this with '' for benchmarking purposes
special_seq = "MKRAHPEYSSSDSELDETIEVEKESADENGNLSSALGSMSPTTSSQILARKRRRGIIEKRRRDRINNSLSELRRLVPSAFEKQGSAKLEKAEILQMTVDHLKMLHTAGGKAFNNPRPGQLGRLLPNQNLPLDITLQSPTGAGPFPPIRNSSPYSVIPQPGMMGNQGMIGNQGNLGNSSTGMIGNSASRPTMPSGEWAPQSSAVRVTCAATTSAMNRPVQGGMIRNPAASIPMRPSSQPGQRQTLQSQVMNIGPSELEMNMGGPQYSQQQAPPNQTAPWPESILPIDQASFASQNRQPFGSSPDDLLCPHPAAESPSDEGALLDQLYLALRNFDGLEEIDRALGIPELVSQSQAVDPEQFSSQDSNIMLEQKAPVFPQQYASQAQMAQGSYSPMQDPNFHTMGQRPSYATLRMQPRPGLRPTGLVQNQPNQLRLQLQHRLQAQQNRQPLMNQISNVSNVNLTLRPGVPTQAPINAQMLAQRQREILNQHLRQRQMHQQQQVQQRTLMMRGQGLNMTPSMVAPSGIPATMSNPRIPQANAQQFPFPPNYGISQQPDPGFTGATTPQSPLMSPRMAHTQSPMMQQSQANPAYQAPSDINGWAQGNMGGNSMFSQQSPPHFGQQANTSMYSNNMNINVSMATNTGGMSSMNQMTGQISMTSVTSVPTSGLSSMGPEQVNDPALRGGNLFPNQLPGMDMIKQEGDTTRKYC-"
special_seq_name = "HEY1::NCOA2"
fodb.loc[
(fodb['fusiongene']==special_seq_name) &
(fodb['aa_seq']==special_seq), 'aa_seq'
] = special_seq.replace('-','')
# filter out anything remaining with invalid characters
fodb['invalid_chars'] = fodb['aa_seq'].apply(lambda x: find_invalid_chars(x, valid_aas))
all_invalid_chars = set().union(*fodb['invalid_chars'])
log_update(f"\tchecking for invalid characters...\n\t\tset of all invalid characters discovered within FOdb: {all_invalid_chars}")
fodb = fodb[fodb['invalid_chars'].str.len()==0].reset_index(drop=True).drop(columns=['invalid_chars'])
log_update(f"\tremoving invalid characters...\n\t\tremaining sequences with valid AAs only: {len(fodb)}")
# aggregate the cancer data - if there's a 1 in the column, add it to the list of affected cancers
# acronym -> cancer conversions based on Supplementary Table 3 of FOdb paper (Tripathi et al. 2023 Defining)
log_update(f"\taggregating cancer data from {len(fodb.columns)-4} individual cancer columns into one...")
log_update(f"\t\tchanging cancer names from acronyms to full")
cancers = list(fodb.columns)[4::]
fodb['cancers'] = ['']*len(fodb)
for cancer in cancers:
mapped_cancer = fodb_codes[cancer].lower() if cancer in fodb_codes else cancer
fodb['cancers'] = fodb.apply(
lambda row: row['cancers'] + f'{mapped_cancer},' if row[cancer] == 1 else row['cancers'],
axis=1
)
fodb['cancers'] = fodb['cancers'].str.strip(',').replace('nan','')
fodb = fodb.drop(columns=['Patient_Count']+cancers)
# Check for list-like qualities in the columns we plan to keep
cols_of_interest = ['primary_source','fusiongene','aa_seq','cancers']
listlike_dict = check_columns_for_listlike(fodb, cols_of_interest, delimiters)
# To deal with duplicate sequences, group fodb by sequence and concatenate fusion gene names, cancer types, and primary source
log_update(f"\tchecking fodb for duplicate protein sequences...\n\t\toriginal size: {len(fodb)}")
duplicates = fodb[fodb.duplicated('aa_seq')]['aa_seq'].unique().tolist()
n_fgenes_with_duplicates = len(fodb[fodb['aa_seq'].isin(duplicates)]['fusiongene'].unique())
n_rows_with_duplicates = len(fodb[fodb['aa_seq'].isin(duplicates)])
log_update(f"\t\t{len(duplicates)} duplicated sequences, corresponding to {n_rows_with_duplicates} rows and {n_fgenes_with_duplicates} distinct fusiongenes")
log_update(f"\tgrouping fodb by amino acid sequence...")
# Merge step
fodb = pd.merge(
fodb.groupby('aa_seq').agg({
'fusiongene': lambda x: x.nunique()}).reset_index().rename(columns={'fusiongene':'n_fusiongenes'}),
fodb.groupby('aa_seq').agg({
'fusiongene': lambda x: ','.join(x),
'cancers': lambda x: ','.join(x),
'primary_source': lambda x: ','.join(x)}).reset_index().rename(columns={'fusiongene':'fusiongenes', 'primary_source':'primary_sources'}).reset_index(drop=True).rename(columns={'fusiongene':'fusiongenes'}),
on='aa_seq'
)
# Turn each aggregated column into sorted, comma-separated list
fodb['fusiongenes'] = fodb['fusiongenes'].apply(lambda x: (',').join(sorted(set(x.split(','))))).str.strip(',')
fodb['cancers'] = fodb['cancers'].apply(lambda x: (',').join(sorted(set(x.split(','))))).str.strip(',')
fodb['primary_sources'] = fodb['primary_sources'].apply(lambda x: (',').join(sorted(set(x.split(','))))).str.strip(',')
# Count and display sequences with >1 fusion gene
duplicates = fodb.loc[fodb['n_fusiongenes']>1]['aa_seq'].tolist()
log_update(f"\t\treorganized database contains {len(duplicates)} proteins with >1 fusion gene")
log_update(f"\t\treorganized database contains {len(fodb)} unique oncofusion sequences")
# Add secondary source column because FOdb is the secondary source here.
fodb['secondary_source'] = ['FOdb']*len(fodb)
# Final checks of database cleanliness
log_update(f"\tperforming final checks on cleaned FOdb...")
duplicates = len(fodb.loc[fodb['aa_seq'].duplicated()]['aa_seq'].tolist())
log_update(f"\t\t{duplicates} duplicate sequences")
invalids=0
for x in all_invalid_chars:
invalids += len(fodb.loc[fodb['aa_seq'].str.contains(x)])
log_update(f"\t\t{invalids} proteins containing invalid chracters")
all_unique_seqs = len(fodb)==len(fodb['aa_seq'].unique())
log_update(f"\t\tevery row contains a unique oncofusion sequence: {all_unique_seqs}")
return fodb
def create_fuson_db(fusionpdb: pd.DataFrame, fodb: pd.DataFrame) -> pd.DataFrame:
"""
Merges cleaned FusionPDB and FOdb to create fuson_db (the full set of fusion sequences for training/benchmarking FusOn-pLM)
Args:
fusionpdb (pd.DataFrame):
"""
log_update("Creating the merged database...")
log_update("\tconcatenating cleaned FusionPDb and cleaned FOdb...")
fuson_db = pd.concat(
[
fusionpdb.rename(columns={'secondary_source':'secondary_sources'}),
fodb.rename(columns={'secondary_source':'secondary_sources'})
]
)
# Handle dupliate amino acid sequences
log_update(f"\tchecking merged database for duplicate protein sequences...\n\t\toriginal size: {len(fuson_db)}")
duplicates = fuson_db[fuson_db.duplicated('aa_seq')]['aa_seq'].unique().tolist()
n_fgenes_with_duplicates = len(fuson_db[fuson_db['aa_seq'].isin(duplicates)]['fusiongenes'].unique())
n_rows_with_duplicates = len(fuson_db[fuson_db['aa_seq'].isin(duplicates)])
log_update(f"\t\t{len(duplicates)} duplicated sequences, corresponding to {n_rows_with_duplicates} rows and {n_fgenes_with_duplicates} distinct fusiongenes")
log_update(f"\tgrouping database by amino acid sequence...")
fuson_db = fuson_db.groupby('aa_seq').agg(
{
'fusiongenes': lambda x: ','.join(x),
'cancers': lambda x: ','.join(x),
'primary_sources': lambda x: ','.join(x),
'secondary_sources': lambda x: ','.join(x)
}
).reset_index()
duplicates = fuson_db.loc[fuson_db['fusiongenes'].str.count(',')>0]['aa_seq'].tolist()
log_update(f"\t\treorganized database contains {len(duplicates)} proteins with >1 fusion gene")
log_update(f"\t\treorganized database contains {len(fuson_db)} unique oncofusion sequences")
# Turn each aggregated column into a set of only the unique entires
for column in fuson_db.columns[1::]:
fuson_db[column] = fuson_db[column].apply(lambda x: (',').join(sorted(set(
[y for y in x.split(',') if len(y)>0]))))
# Add a column for length
log_update(f"\tadding a column for length...")
fuson_db['length'] = fuson_db['aa_seq'].apply(lambda x: len(x))
# Sort by fusiongenes, then length
log_update(f"\tsorting by fusion gene name, then length...")
fuson_db = fuson_db.sort_values(by=['fusiongenes','length'],ascending=[True,True]).reset_index(drop=True)
# Add a seq_id column: seq1, seq2, ..., seqn
log_update(f"\tadding sequence ids: seq1, seq2, ..., seqn")
fuson_db['seq_id'] = ['seq'+str(i+1) for i in range(len(fuson_db))]
# Final checks of database cleanliness
log_update(f"\tperforming final checks on fuson_db...")
duplicates = len(fuson_db.loc[fuson_db['aa_seq'].duplicated()]['aa_seq'].tolist())
log_update(f"\t\t{duplicates} duplicate sequences")
all_unique_seqs = len(fuson_db)==len(fuson_db['aa_seq'].unique())
log_update(f"\t\tevery row contains a unique oncofusion sequence: {all_unique_seqs}")
return fuson_db
def head_tail_mappings(fuson_db):
log_update("\nGenes and Ensembl IDs corresponding to the head and tail proteins have been mapped on UniProt. Now, combining these results.")
# Read the ensembl map, gene name map, and dictionary from gene --> ensembl ids
ensembl_map = pd.read_csv("head_tail_data/ensembl_ht_idmap.txt",sep="\t")
name_map = pd.read_csv("head_tail_data/genename_ht_idmap.txt",sep="\t")
with open("head_tail_data/gene_to_ensembl_dict.pkl", "rb") as f:
gene_ens_dict = pickle.load(f)
log_update(f"\tCheck: ensembl map and gene name map have same columns: {set(ensembl_map.columns)==set(name_map.columns)}")
log_update(f"\t\tColumns = {list(ensembl_map.columns)}")
# Prepare to merge
log_update(f"\tMerging the ensembl map and gene name map:")
ensembl_map = ensembl_map.rename(columns={'From': 'ensembl_id'}) # mapped from ensembl ids
name_map = name_map.rename(columns={'From': 'htgene'}) # mapped from head or tail genes
name_map['ensembl_id'] = name_map['htgene'].map(gene_ens_dict) # add ensembl id column bsed on head and tail genes
name_map['ensembl_id'] = name_map['ensembl_id'].apply(lambda x: x.split(',') if type(x)==str else x) # make it a string if multiple matches
log_update(f"\t\tLength of gene-based map before exploding ensembl_id column: {len(name_map)}")
name_map = name_map.explode('ensembl_id') # explode so each ensembl id is its own line
log_update(f"\t\tLength of gene-based map after exploding ensembl_id column: {len(name_map)}")
log_update(f"\t\tLength of ensembl-based map: {len(ensembl_map)}")
unimap = pd.merge(name_map[['htgene','ensembl_id','Entry','Reviewed']],
ensembl_map[['ensembl_id','Entry','Reviewed']],
on=['ensembl_id','Entry','Reviewed'],
how='outer'
)
unimap['Reviewed'] = unimap['Reviewed'].apply(lambda x: '1' if x=='reviewed' else '0' if x=='unreviewed' else 'N') # N for nan
log_update(f"\t\tLength of merge: {len(unimap)}. Merge preview:")
log_update(unimap.head())
unimap = unimap.drop_duplicates(['htgene','Entry','Reviewed']).reset_index(drop=True)
log_update(f"\t\tLength of merge after dropping rows where only ensembl_id changed: {len(unimap)}. Merge preview: ")
log_update(unimap.head())
unimap = unimap.groupby('htgene').agg(
{
'Entry': lambda x: ','.join(x),
'Reviewed': lambda x: ''.join(x)
}
).reset_index()
unimap = unimap.rename(columns={
'htgene': 'Gene',
'Entry': 'UniProtID',
})
log_update(f"\t\tLength of merge after grouping by gene name: {len(unimap)}. Merge preview:")
log_update(unimap.head())
# what are the proteins whose head or tail genes are in this list?
log_update(f"\tChecking which fusion proteins have unmappable heads and/or tails:")
temp = fuson_db.copy(deep=True)
temp['fusiongenes'] = temp['fusiongenes'].apply(lambda x: x.split(','))
temp = temp.explode('fusiongenes')
temp['hgene'] = temp['fusiongenes'].str.split('::',expand=True)[0]
temp['tgene'] = temp['fusiongenes'].str.split('::',expand=True)[1]
# See which gene IDs weren't covered
log_update(f"\tChecking which gene IDs were not mapped by either method")
all_geneids = temp['hgene'].tolist() +temp['tgene'].tolist()
all_geneids = list(set(all_geneids))
all_mapped_genes = unimap['Gene'].unique().tolist()
unmapped_geneids = set(all_geneids) - set(all_mapped_genes)
log_update(f"\t\t{len(all_mapped_genes)}/{len(all_geneids)} were mapped\n\t\t{len(unmapped_geneids)}/{len(all_geneids)} were unmapped")
log_update(f"\t\tUnmapped geneids: {','.join(unmapped_geneids)}")
# Find the ok ones and print
ok_seqs = temp.loc[
(temp['hgene'].isin(all_mapped_genes)) | # head gene was found, OR
(temp['tgene'].isin(all_mapped_genes)) # tail gene was found
]['seq_id'].unique().tolist()
ok_seqsh = temp.loc[
(temp['hgene'].isin(all_mapped_genes)) # head gene was found
]['seq_id'].unique().tolist()
ok_seqst = temp.loc[
(temp['tgene'].isin(all_mapped_genes)) # tail gene was found
]['seq_id'].unique().tolist()
ok_seqsboth = temp.loc[
(temp['hgene'].isin(all_mapped_genes)) & # head gene was found, AND
(temp['tgene'].isin(all_mapped_genes)) # tail gene was found
]['seq_id'].unique().tolist()
log_update(f"\tTotal fusion sequence ids: {len(temp['seq_id'].unique())}")
log_update(f"\tFusion sequences with at least 1 mapped constituent:\
\n\t\tMapped head: {len(ok_seqsh)}\
\n\t\tMapped tail: {len(ok_seqst)}\
\n\t\tMapped head or tail: {len(ok_seqs)}\
\n\t\tMapped head AND tail: {len(ok_seqsboth)}")
# Now look at the bad side
atleast_1_lost = temp.loc[
((temp['hgene'].isin(unmapped_geneids)) & ~(temp['seq_id'].isin(ok_seqsh))) | # head not found in row, AND head not found for seq_id - OR
((temp['tgene'].isin(unmapped_geneids)) & ~(temp['seq_id'].isin(ok_seqst))) # tail not found in row, AND tail not found for seq_id
]['seq_id'].unique().tolist()
atleast_1_losth = temp.loc[
(temp['hgene'].isin(unmapped_geneids)) & # head not found in this row AND
~(temp['seq_id'].isin(ok_seqsh)) # head not found for this seq id
]['seq_id'].unique().tolist()
atleast_1_lostt = temp.loc[
(temp['tgene'].isin(unmapped_geneids)) & # tail not found in this row AND
~(temp['seq_id'].isin(ok_seqst)) # tail not found for this seq id
]['seq_id'].unique().tolist()
both_lost = temp.loc[
((temp['hgene'].isin(unmapped_geneids)) & ~(temp['seq_id'].isin(ok_seqsh))) & # there's no head, and this seq id has no head - AND
((temp['tgene'].isin(unmapped_geneids)) & ~(temp['seq_id'].isin(ok_seqst))) # there's no tail, and this seq id has no tail
]['seq_id'].unique().tolist()
log_update(f"\tFusion sequences with at least 1 unmapped constituent:")
log_update(f"\t\tUnmapped head: {len(atleast_1_losth)}\
\n\t\tUnmapped tail: {len(atleast_1_lostt)}\
\n\t\tUnmapped head or tail: {len(atleast_1_lost)}\
\n\t\tUnmapped head AND tail: {len(both_lost)}")
log_update(f"\tseq_ids with at least 1 unmapped part: {atleast_1_lost}")
assert len(ok_seqsboth)+ len(atleast_1_lost) == len(temp['seq_id'].unique())
log_update(f"\tFusions with H&T covered plus Fusions with H|T lost = total = {len(ok_seqsboth)}+ {len(atleast_1_lost)} = {len(ok_seqsboth)+ len(atleast_1_lost)} = {len(temp['seq_id'].unique())}")
### Save the unimap
unimap.to_csv('head_tail_data/htgenes_uniprotids.csv',index=False)
def assemble_uniprot_query(path_to_gene_ens_dict="head_tail_data/gene_to_ensembl_dict.pkl",path_to_fuson_db="fuson_db.csv"):
"""
To analyze the BLAST results effectively, we must know which UniProt accessions we *expect* to see for each fusion oncoprotein.
We will try to map each FO to its head and tail accessions by searching UniProt ID map by gene name and Ensembl ID.
This method will create two input lists for UniProt:
- gene_name_inputs.txt: list of all uinque head and tail gene names
- ensembl_inputs.txt
"""
log_update("\nMaking inputs for UniProt ID map, to find accessions for head and tail genes")
if not(os.path.exists(path_to_gene_ens_dict)):
raise Exception(f"File {path_to_gene_ens_dict} does not exist")
with open(path_to_gene_ens_dict, "rb") as f:
gene_ens_dict = pickle.load(f)
all_htgenes_temp = list(gene_ens_dict.keys())
all_ens = list(gene_ens_dict.values())
all_ens = list(set(",".join(all_ens).split(",")))
log_update(f"\tTotal unique head and tail genes, only accounting for FusionPDB: {len(all_htgenes_temp)}")
# need to add other htgenes from UniProt
fuson_db = pd.read_csv(path_to_fuson_db)
fuson_db['fusiongenes'] = fuson_db['fusiongenes'].apply(lambda x: x.split(','))
fuson_db = fuson_db.explode('fusiongenes')
fuson_db['hgene'] = fuson_db['fusiongenes'].str.split('::',expand=True)[0]
fuson_db['tgene'] = fuson_db['fusiongenes'].str.split('::',expand=True)[1]
fuson_htgenes = fuson_db['hgene'].tolist() + fuson_db['tgene'].tolist()
fuson_htgenes = set(fuson_htgenes)
all_htgenes = set(all_htgenes_temp).union(set(fuson_htgenes))
all_htgenes = list(set(all_htgenes))
log_update(f"\tTotal unique head and tail genes after adding FOdb: {len(all_htgenes)}")
log_update(f"\tTotal unique ensembl IDs: {len(all_ens)}")
# go through each and write a file
input_dir = "head_tail_data/uniprot_idmap_inputs"
os.makedirs(input_dir,exist_ok=True)
if os.path.exists(f"{input_dir}/head_tail_genes.txt"):
log_update("\nAlready assembled UniProt ID mapping input for head and tail genes. Continuing")
else:
with open(f"{input_dir}/head_tail_genes.txt", "w") as f:
for i, gene in enumerate(all_htgenes):
if i!=len(all_htgenes)-1:
f.write(f"{gene}\n")
else:
f.write(f"{gene}")
if os.path.exists(f"{input_dir}/head_tail_ens.txt"):
log_update("\nAlready assembled UniProt ID mapping input for head and tail ensembl IDs. Continuing")
else:
with open(f"{input_dir}/head_tail_ens.txt", "w") as f:
for i, ens in enumerate(all_ens):
if i!=len(all_ens)-1:
f.write(f"{ens}\n")
else:
f.write(f"{ens}")
def main():
# Define global variables from config.DATA_CLEANING
FODB_PATH = CLEAN.FODB_PATH
FODB_PUNCTA_PATH = CLEAN.FODB_PUNCTA_PATH
FUSIONPDB_PATH = CLEAN.FUSIONPDB_PATH
LOG_PATH = "data_cleaning_log.txt"
SAVE_CLEANED_FODB = False
# Prepare the log file
with open_logfile(LOG_PATH):
log_update("Loaded data-cleaning configurations from config.py")
CLEAN.print_config(indent='\t')
log_update("Reading FusionPDB...")
fusionpdb = pd.read_csv(FUSIONPDB_PATH,sep='\t',header=None)
fusionpdb = clean_fusionpdb(fusionpdb, TCGA_CODES, DELIMITERS, VALID_AAS)
log_update("Saving FusionPDB to FusionPDB_cleaned.csv...")
fusionpdb.to_csv('raw_data/FusionPDB_cleaned.csv', index=False)
# Clean FOdb, optinoally save
log_update("Reading FOdb...")
fodb = pd.read_csv(FODB_PATH)
fodb = clean_fodb(fodb, FODB_CODES, DELIMITERS, VALID_AAS)
if SAVE_CLEANED_FODB:
log_update("Saving FOdb to FOdb_cleaned.csv...")
fusionpdb.to_csv('FOdb_cleaned.csv', index=False)
# Merge FusionPDB and FOdb to fuson_db
fuson_db = create_fuson_db(fusionpdb, fodb)
# Mark benchmarking sequences
# FOdb puncta benchmark
log_update("Adding benchmarking sequences to fuson_db...")
fodb_puncta = pd.read_csv(FODB_PUNCTA_PATH)
# handle the mistake sequence - take the "-" off the end
special_seq = "MKRAHPEYSSSDSELDETIEVEKESADENGNLSSALGSMSPTTSSQILARKRRRGIIEKRRRDRINNSLSELRRLVPSAFEKQGSAKLEKAEILQMTVDHLKMLHTAGGKAFNNPRPGQLGRLLPNQNLPLDITLQSPTGAGPFPPIRNSSPYSVIPQPGMMGNQGMIGNQGNLGNSSTGMIGNSASRPTMPSGEWAPQSSAVRVTCAATTSAMNRPVQGGMIRNPAASIPMRPSSQPGQRQTLQSQVMNIGPSELEMNMGGPQYSQQQAPPNQTAPWPESILPIDQASFASQNRQPFGSSPDDLLCPHPAAESPSDEGALLDQLYLALRNFDGLEEIDRALGIPELVSQSQAVDPEQFSSQDSNIMLEQKAPVFPQQYASQAQMAQGSYSPMQDPNFHTMGQRPSYATLRMQPRPGLRPTGLVQNQPNQLRLQLQHRLQAQQNRQPLMNQISNVSNVNLTLRPGVPTQAPINAQMLAQRQREILNQHLRQRQMHQQQQVQQRTLMMRGQGLNMTPSMVAPSGIPATMSNPRIPQANAQQFPFPPNYGISQQPDPGFTGATTPQSPLMSPRMAHTQSPMMQQSQANPAYQAPSDINGWAQGNMGGNSMFSQQSPPHFGQQANTSMYSNNMNINVSMATNTGGMSSMNQMTGQISMTSVTSVPTSGLSSMGPEQVNDPALRGGNLFPNQLPGMDMIKQEGDTTRKYC-"
special_seq_name = "HEY1_NCOA2"
fodb_puncta.loc[
(fodb_puncta['FO_Name']==special_seq_name) &
(fodb_puncta['AAseq']==special_seq), 'AAseq'
] = special_seq.replace('-','')
fodb_puncta_sequences = fodb_puncta['AAseq'].unique().tolist()
benchmark_sequences = dict(zip(fodb_puncta_sequences, ['Puncta']*len(fodb_puncta_sequences)))
log_update(f"\tRead FOdb puncta data and isolated {len(benchmark_sequences)} sequences for puncta benchmark")
# Biological discovery benchmark
benchmark_sequences2 = fuson_db.loc[
(fuson_db['fusiongenes'].str.contains('EWSR1::FLI1')) |
(fuson_db['fusiongenes'].str.contains('PAX3::FOXO1')) |
(fuson_db['fusiongenes'].str.contains('BCR::ABL1')) |
(fuson_db['fusiongenes'].str.contains('EML4::ALK'))
]['aa_seq'].unique().tolist()
benchmark_sequences2 = dict(zip(benchmark_sequences2, ['Biological Discovery']*len(benchmark_sequences2)))
log_update(f"\tIsolated all EWSR1::FLI1, PAX3::FOXO1, BCR::ABL1, and EML4::ALK sequences ({len(benchmark_sequences2)} total) for biological benchmarks...")
for k, v in benchmark_sequences2.items():
if k in benchmark_sequences:
benchmark_sequences[k] = benchmark_sequences[k] + ',' + v
else:
benchmark_sequences[k] = v
log_update(f"\tTotal unique benchmark sequences: {len(benchmark_sequences)}")
# Add benchmark column
log_update("\tAdding benchmark column...")
fuson_db['benchmark'] = fuson_db['aa_seq'].apply(lambda x: benchmark_sequences[x] if x in benchmark_sequences else np.nan)
# Save fuson_db
log_update("\nWriting final database to fuson_db.csv...")
fuson_db.to_csv('fuson_db.csv', index=False)
log_update("Cleaning complete.")
# Assemble head tail queries for UniProt
assemble_uniprot_query()
# Do the head tail mappings
head_tail_mappings(fuson_db)
if __name__ == '__main__':
main()
|