import pandas as pd import os import pickle from fuson_plm.data.config import SPLIT from fuson_plm.utils.logging import log_update, open_logfile from fuson_plm.utils.splitting import split_clusters, check_split_validity from fuson_plm.utils.visualizing import set_font, visualize_splits def get_benchmark_data(fuson_db_path, clusters): """ """ # Read the fusion database fuson_db = pd.read_csv(fuson_db_path) # Get original benchmark sequences, and benchmark sequences that were clustered original_benchmark_sequences = fuson_db.loc[(fuson_db['benchmark'].notna()) ] benchmark_sequences = fuson_db.loc[ (fuson_db['benchmark'].notna()) & # it's a benchmark sequence (fuson_db['aa_seq'].isin(list(clusters['member seq']))) # it was clustered (it's under the length limit specified for clustering) ]['aa_seq'].to_list() # Get the sequence IDs of all clustered benchmark sequences. benchmark_seq_ids = fuson_db.loc[fuson_db['benchmark'].notna()]['seq_id'] # Use benchmark_seq_ids to find which clusters contain benchmark sequences. benchmark_cluster_reps = clusters.loc[clusters['member seq_id'].isin(benchmark_seq_ids)]['representative seq_id'].unique().tolist() log_update(f"\t{len(benchmark_sequences)}/{len(original_benchmark_sequences)} benchmarking sequences (only those shorter than config.CLUSTERING[\'max_seq_length\']) were grouped into {len(benchmark_cluster_reps)} clusters. These will be reserved for the test set.") return benchmark_cluster_reps, benchmark_sequences def get_training_dfs(train, val, test): log_update('\nMaking dataframes for ESM finetuning...') # Delete cluster-related columns we don't need train = train.drop(columns=['representative seq_id','member seq_id', 'representative seq']).rename(columns={'member seq':'sequence'}) val = val.drop(columns=['representative seq_id','member seq_id', 'representative seq']).rename(columns={'member seq':'sequence'}) test = test.drop(columns=['representative seq_id','member seq_id', 'representative seq']).rename(columns={'member seq':'sequence'}) return train, val, test def main(): """ """ # Read all the input files LOG_PATH = "splitting_log.txt" FUSON_DB_PATH = SPLIT.FUSON_DB_PATH CLUSTER_OUTPUT_PATH = SPLIT.CLUSTER_OUTPUT_PATH RANDOM_STATE_1 = SPLIT.RANDOM_STATE_1 TEST_SIZE_1 = SPLIT.TEST_SIZE_1 RANDOM_STATE_2 = SPLIT.RANDOM_STATE_2 TEST_SIZE_2 = SPLIT.TEST_SIZE_2 # set font set_font() # Prepare the log file with open_logfile(LOG_PATH): log_update("Loaded data-splitting configurations from config.py") SPLIT.print_config(indent='\t') # Prepare directory to save results os.makedirs("splits",exist_ok=True) # Read the clusters and get a list of the representative IDs for splitting clusters = pd.read_csv(CLUSTER_OUTPUT_PATH) reps = clusters['representative seq_id'].unique().tolist() log_update(f"\nPreparing clusters...\n\tCollected {len(reps)} clusters for splitting") # Get the benchmark cluster representatives and sequences benchmark_cluster_reps, benchmark_sequences = get_benchmark_data(FUSON_DB_PATH, clusters) # Make the splits and extract the results splits = split_clusters(reps, benchmark_cluster_reps=benchmark_cluster_reps, random_state_1 = RANDOM_STATE_1, random_state_2 = RANDOM_STATE_2, test_size_1 = TEST_SIZE_1, test_size_2 = TEST_SIZE_2) X_train = splits['X_train'] X_val = splits['X_val'] X_test = splits['X_test'] # Make slices of clusters dataframe for train, val, and test train_clusters = clusters.loc[clusters['representative seq_id'].isin(X_train)].reset_index(drop=True) val_clusters = clusters.loc[clusters['representative seq_id'].isin(X_val)].reset_index(drop=True) test_clusters = clusters.loc[clusters['representative seq_id'].isin(X_test)].reset_index(drop=True) # Check validity check_split_validity(train_clusters, val_clusters, test_clusters, benchmark_sequences=benchmark_sequences) # Print min and max sequence lengths min_train_seqlen = min(train_clusters['member seq'].str.len()) max_train_seqlen = max(train_clusters['member seq'].str.len()) min_val_seqlen = min(val_clusters['member seq'].str.len()) max_val_seqlen = max(val_clusters['member seq'].str.len()) min_test_seqlen = min(test_clusters['member seq'].str.len()) max_test_seqlen = max(test_clusters['member seq'].str.len()) log_update(f"\nLength breakdown summary...\n\tTrain: min seq length = {min_train_seqlen}, max seq length = {max_train_seqlen}") log_update(f"\tVal: min seq length = {min_val_seqlen}, max seq length = {max_val_seqlen}") log_update(f"\tTest: min seq length = {min_test_seqlen}, max seq length = {max_test_seqlen}") # Make plots to visualize the splits visualize_splits(train_clusters, val_clusters, test_clusters, benchmark_cluster_reps) # cols = representative seq_id,member seq_id,representative seq,member seq train_clusters.to_csv("../data/splits/train_cluster_split.csv",index=False) val_clusters.to_csv("../data/splits/val_cluster_split.csv",index=False) test_clusters.to_csv("../data/splits/test_cluster_split.csv",index=False) log_update('\nSaved cluster splits to splitting/train_cluster_split.csv, splitting/val_cluster_split.csv, splitting/test_cluster_split.csv') cols=','.join(list(train_clusters.columns)) log_update(f'\tColumns: {cols}') # IF SnP vectors have been comptued already, make train_df, val_df, test_df: the data that will be input to the training script train_df, val_df, test_df = get_training_dfs(train_clusters, val_clusters, test_clusters) train_df.to_csv("../data/splits/train_df.csv",index=False) val_df.to_csv("../data/splits/val_df.csv",index=False) test_df.to_csv("../data/splits/test_df.csv",index=False) log_update('\nSaved training dataframes to splits/train_df.csv, splits/val_df.csv, splits/test_df.csv') cols=','.join(list(train_df.columns)) log_update(f'\tColumns: {cols}') if __name__ == "__main__": main()