File size: 6,639 Bytes
d061944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
"""Console logger utilities.

Copied from https://github.com/HazyResearch/transformers/blob/master/src/utils/utils.py
Copied from https://docs.python.org/3/howto/logging-cookbook.html#using-a-context-manager-for-selective-logging
"""

import logging
import math

import fsspec
import lightning
import torch
from timm.scheduler import CosineLRScheduler


def fsspec_exists(filename):
  """Check if a file exists using fsspec."""
  fs, _ = fsspec.core.url_to_fs(filename)
  return fs.exists(filename)


def fsspec_listdir(dirname):
  """Listdir in manner compatible with fsspec."""
  fs, _ = fsspec.core.url_to_fs(dirname)
  return fs.ls(dirname)


def fsspec_mkdirs(dirname, exist_ok=True):
  """Mkdirs in manner compatible with fsspec."""
  fs, _ = fsspec.core.url_to_fs(dirname)
  fs.makedirs(dirname, exist_ok=exist_ok)


def print_nans(tensor, name):
  if torch.isnan(tensor).any():
    print(name, tensor)


class CosineDecayWarmupLRScheduler(
  CosineLRScheduler,
  torch.optim.lr_scheduler._LRScheduler):
  """Wrap timm.scheduler.CosineLRScheduler
  Enables calling scheduler.step() without passing in epoch.
  Supports resuming as well.
  Adapted from:
    https://github.com/HazyResearch/hyena-dna/blob/main/src/utils/optim/schedulers.py
  """

  def __init__(self, *args, **kwargs):
    super().__init__(*args, **kwargs)
    self._last_epoch = -1
    self.step(epoch=0)

  def step(self, epoch=None):
    if epoch is None:
      self._last_epoch += 1
    else:
      self._last_epoch = epoch
    # We call either step or step_update, depending on
    # whether we're using the scheduler every epoch or every
    # step.
    # Otherwise, lightning will always call step (i.e.,
    # meant for each epoch), and if we set scheduler
    # interval to "step", then the learning rate update will
    # be wrong.
    if self.t_in_epochs:
      super().step(epoch=self._last_epoch)
    else:
      super().step_update(num_updates=self._last_epoch)


class LoggingContext:
  """Context manager for selective logging."""
  def __init__(self, logger, level=None, handler=None, close=True):
    self.logger = logger
    self.level = level
    self.handler = handler
    self.close = close

  def __enter__(self):
    if self.level is not None:
      self.old_level = self.logger.level
      self.logger.setLevel(self.level)
    if self.handler:
      self.logger.addHandler(self.handler)

  def __exit__(self, et, ev, tb):
    if self.level is not None:
      self.logger.setLevel(self.old_level)
    if self.handler:
      self.logger.removeHandler(self.handler)
    if self.handler and self.close:
      self.handler.close()


def get_logger(name=__name__, level=logging.INFO) -> logging.Logger:
  """Initializes multi-GPU-friendly python logger."""

  logger = logging.getLogger(name)
  logger.setLevel(level)

  # this ensures all logging levels get marked with the rank zero decorator
  # otherwise logs would get multiplied for each GPU process in multi-GPU setup
  for level in ('debug', 'info', 'warning', 'error',
                'exception', 'fatal', 'critical'):
    setattr(logger,
            level,
            lightning.pytorch.utilities.rank_zero_only(
              getattr(logger, level)))

  return logger


class Sampler:
  def __init__(self, shape):
    self.shape = shape

  def _sampling_noise(self):
    pass
  
  def _hard_sample(self, logits):
    pass

  def _soft_sample(self, logits):
    return 0

  def sample(self, logits):
    noise = self._sampling_noise()
    noise = noise[: logits.shape[0], :]
    logits = logits + noise.to(
      dtype=logits.dtype, device=logits.device)
    hard_sample = self._hard_sample(logits)
    soft_sample = self._soft_sample(logits)
    return soft_sample + (hard_sample - soft_sample).detach()


class TopKSampler(Sampler):
  def __init__(self, k, shape, gamma_tau=1.0):
    super().__init__(shape)
    self.k = k
    self.gamma_tau = gamma_tau
    self.num_betas = 10
    self.sampler = torch.distributions.gamma.Gamma(
      1 / k * torch.ones(self.num_betas, * self.shape), 1.0)

  def _sampling_noise(self):
    noise = self.sampler.sample()
    beta = self.k / torch.arange(1, self.num_betas + 1, 1,
                                 dtype=torch.float32)
    beta = beta[:, None, None]
    assert beta.ndim == noise.ndim
    s = noise / beta
    s = torch.sum(s, axis=0)
    s = s - math.log(10.0)
    s = self.gamma_tau * (s / self.k)
    return s

  def _hard_sample(self, logits):
    assert logits.ndim == 2
    thresholds, _ = torch.sort(logits, dim=-1)
    thresholds = thresholds[:, - self.k][:, None]
    return (logits >= thresholds).type(logits.dtype)

  def _soft_sample(self, logits):
    soft_top_k = logits - torch.mean(logits, dim=-1,
                                     keepdim=True)
    return soft_top_k / torch.norm(soft_top_k, dim=-1,
                                   keepdim=True)


class DeterministicTopK(TopKSampler):
  def __init__(self, k):
    super().__init__(k, shape=(1, 1))

  def _sampling_noise(self):
    return 0

  def discreize(self, x):
    hard_sample = self._hard_sample(x)
    soft_sample = self._soft_sample(x)
    return soft_sample + (hard_sample - soft_sample).detach()

class GumbelSampler(Sampler):

  def __init__(self, shape, temperature=1.0):
    super().__init__(shape)
    self.temperature = temperature

  def _sampling_noise(self):
    return - (1e-10 - (
      torch.rand(* self.shape) + 1e-10).log()).log()

  def _hard_sample(self, logits):
    assert logits.ndim == 2
    indices = torch.argmax(logits, dim=-1)
    zeros = logits * 0
    ones = torch.ones_like(logits[:, :, :1])
    return torch.scatter(zeros, -1, indices[:, :, None],
                         ones)

  def _soft_sample(self, logits):
    return torch.nn.functional.softmax(
      logits / self.temperature, dim=-1)


class BinarySampler(GumbelSampler):

  def sample(self, probs):
    # TODO(subhamsahoo): use the temperature parameter.
    pos_noise = self._sampling_noise().to(
      dtype=probs.dtype, device=probs.device)
    neg_noise = self._sampling_noise().to(
      dtype=probs.dtype, device=probs.device)
    del_noise_exp = (neg_noise - pos_noise).exp()
    hard_sample = (probs * (1 + del_noise_exp)
                   > 1).to(probs.dtype)
    soft_sample = probs / (probs + (1 - probs) * del_noise_exp)
    return soft_sample + (hard_sample - soft_sample).detach()


class GaussianSampler:
  def __init__(self):
    self.softplus = torch.nn.Softplus()

  def sample(self, x):
    assert x.ndim == 2
    n = x.shape[-1] // 2
    mu = x[:, :n]
    sigma = self.softplus(x[:, n:]).sqrt()
    return mu + sigma * torch.randn_like(mu)