File size: 9,739 Bytes
d8ed92a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from transformers import AutoModel, AutoTokenizer
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score

from tqdm import tqdm
from datetime import datetime
import pandas as pd
import numpy as np
import pickle
import os

# Hyperparameters dictionary
path = "/workspace/sg666/MDpLM"

hyperparams = {
    "batch_size": 1,
    "learning_rate": 5e-4,
    "num_epochs": 5,
    "esm_model_path": "facebook/esm2_t33_650M_UR50D",
    'mlm_model_path': path + "/benchmarks/MLM/model_ckpts/best_model_epoch",
    "mdlm_model_path": path + "/checkpoints/membrane_automodel/epochs30_lr3e-4_bsz16_gradclip1_beta-one0.9_beta-two0.999_bf16_all-params",
    "train_data": path + "/benchmarks/Supervised/Localization/true_deeploc2.0_cell-local_train-val.csv",
    "test_data" : path + "/benchmarks/Supervised/Localization/true_deeploc2.0_cell-local_test.csv",
}

# Helper functions to obtain all embeddings for a sequence
def load_models(esm_model_path, mlm_model_path, mdlm_model_path):
    esm_tokenizer = AutoTokenizer.from_pretrained(esm_model_path)
    esm_model = AutoModel.from_pretrained(esm_model_path).to(device)
    mlm_model = AutoModel.from_pretrained(mlm_model_path).to(device)
    mdlm_model = AutoModel.from_pretrained(mdlm_model_path).to(device)

    return esm_tokenizer, esm_model, mlm_model, mdlm_model

def get_latents(embedding_type, tokenizer, esm_model, mlm_model, mdlm_model, sequence, device):
    if embedding_type == "esm":
        inputs = tokenizer(sequence, return_tensors='pt').to(device)
        with torch.no_grad():
            embeddings = esm_model(**inputs).last_hidden_state.squeeze(0)

    elif embedding_type == "mlm":
        inputs = tokenizer(sequence, return_tensors='pt')['input_ids'].to(device)
        with torch.no_grad():
            embeddings = mlm_model(inputs).last_hidden_state.squeeze(0)

    elif embedding_type == "mdlm":
        inputs = tokenizer(sequence, return_tensors='pt')['input_ids'].to(device)
        with torch.no_grad():
            embeddings = mdlm_model(inputs).last_hidden_state.squeeze(0)
    
    return embeddings


# Dataset class can load pickle file
class LocalizationDataset(Dataset):
    def __init__(self, embedding_type, csv_file, esm_model_path, mlm_model_path, mdlm_model_path, device):
        self.data = pd.read_csv(csv_file)
        self.data = self.data[self.data['Sequence'].apply(len) < 1024].reset_index(drop=True)
        self.embedding_type = embedding_type
        self.tokenizer, self.esm_model, self.mlm_model, self.mdlm_model = load_models(esm_model_path, mlm_model_path, mdlm_model_path)
        self.device = device

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        sequence = self.data.iloc[idx]['Sequence']
        embeddings = get_latents(self.embedding_type, self.tokenizer, self.mlm_model, self.esm_model, self.mdlm_model,
                                 sequence, self.device)

        label = 0 if self.data.iloc[idx]['Cell membrane'] == 0 else 1
        labels = torch.tensor(label, dtype=torch.float32).view(1,1).squeeze(-1)

        return embeddings, labels

# Predict localization with MLP head using pooled embeddings
class LocalizationPredictor(nn.Module):
    def __init__(self, input_dim):
        super(LocalizationPredictor, self).__init__()
        self.classifier = nn.Sequential(
            nn.Linear(input_dim, 640),
            nn.ReLU(),
            nn.Linear(640, 1)
        )

    def forward(self, embeddings):
        logits = self.classifier(embeddings)
        logits = torch.mean(logits, dim=1)
        probs = torch.nn.functional.softmax(logits)
        return probs

# Training function
def train(model, dataloader, optimizer, criterion, device):
    model.train()
    total_loss = 0
    for embeddings, labels in tqdm(dataloader):
        embeddings, labels = embeddings.to(device), labels.to(device)
        optimizer.zero_grad()
        outputs = model(embeddings)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        total_loss += loss.item()
    return total_loss / len(dataloader)

# Evaluation function
def evaluate(model, dataloader, device):
    model.eval()
    preds, true_labels = [], []
    with torch.no_grad():
        for embeddings, labels in tqdm(dataloader):
            embeddings, labels = embeddings.to(device), labels.to(device)
            outputs = model(embeddings)
            preds.append(outputs.cpu().numpy())
            true_labels.append(labels.cpu().numpy())
    return preds, true_labels

# Metrics calculation
def calculate_metrics(preds, labels, threshold=0.5):
    all_metrics = []
    for pred, label in zip(preds, labels):
        pred = (pred > threshold).astype(int)

        accuracy = accuracy_score(label, pred)
        precision = precision_score(label, pred, average='macro')
        recall = recall_score(label, pred, average='macro')
        f1_macro = f1_score(label, pred, average='macro')
        f1_micro = f1_score(label, pred, average='micro')
        
        all_metrics.append([accuracy, precision, recall, f1_macro, f1_micro])
    
    avg_metrics = np.mean(all_metrics, axis=0)
    print(avg_metrics)
    return avg_metrics



if __name__ == "__main__":
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    for embedding_type in ['mdlm', 'esm', 'mlm']:
        # Initialize datasets
        train_dataset = LocalizationDataset(embedding_type,
                                            hyperparams['train_data'],
                                            hyperparams['esm_model_path'],
                                            hyperparams['mlm_model_path'],
                                            hyperparams['mdlm_model_path'],
                                            device)
        test_dataset = LocalizationDataset(embedding_type,
                                           hyperparams['test_data'],
                                           hyperparams['esm_model_path'],
                                           hyperparams['mlm_model_path'],
                                           hyperparams['mdlm_model_path'],
                                           device)

        # Prepare dataloaders
        train_dataloader = DataLoader(train_dataset, batch_size=hyperparams["batch_size"], shuffle=True)
        test_dataloader = DataLoader(test_dataset, batch_size=hyperparams["batch_size"], shuffle=False)

        # Initialize model, optimizer, and loss function
        input_dim=640 if embedding_type=="mdlm" else 1280
        model = LocalizationPredictor(input_dim=input_dim).to(device)
        optimizer = optim.Adam(model.parameters(), lr=hyperparams["learning_rate"])
        criterion = nn.BCELoss()

        # Initialize main directory model checkpoints
        base_checkpoint_dir = f"{path}/benchmarks/Supervised/Localization/model_checkpoints/{embedding_type}"
        # Initialize subdirectory and name it based on hyperparameters
        hyperparam_str = f"batch_{hyperparams['batch_size']}_lr_{hyperparams['learning_rate']}_epochs_{hyperparams['num_epochs']}"
        model_checkpoint_dir = os.path.join(base_checkpoint_dir, hyperparam_str)
        os.makedirs(model_checkpoint_dir, exist_ok=True)


        # Training loop
        for epoch in range(hyperparams["num_epochs"]):
            # Train the model
            train_loss = train(model, train_dataloader, optimizer, criterion, device)
            print(f"EPOCH {epoch+1}/{hyperparams['num_epochs']}")
            print(f"TRAIN LOSS: {train_loss:.4f}")
            print("\n")

            # Save the model checkpoint for the current epoch
            checkpoint_path = os.path.join(model_checkpoint_dir, f"epoch{epoch + 1}.pth")
            torch.save({
                'epoch': epoch + 1,
                'model_state_dict': model.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
                'loss': train_loss,
            }, checkpoint_path)
            print(f"Checkpoint saved at {checkpoint_path}\n")

            # Save hyperparameters only once
            if epoch == 0:  # Hyperparameters don't change midway through training
                hyperparams_file = os.path.join(model_checkpoint_dir, "hyperparams.txt")
                with open(hyperparams_file, 'w') as f:
                    for key, value in hyperparams.items():
                        f.write(f"{key}: {value}\n")
                print(f"Hyperparameters saved at {hyperparams_file}\n")

        # Evaluate model on test dataset
        print("Test set")
        test_preds, test_labels = evaluate(model, test_dataloader, device)
        test_metrics = calculate_metrics(test_preds, test_labels)
        print(test_metrics)
        print("TEST METRICS:")
        print(f"Accuracy: {test_metrics[0]:.4f}")
        print(f"Precision: {test_metrics[1]:.4f}")
        print(f"Recall: {test_metrics[2]:.4f}")
        print(f"F1 Macro Score: {test_metrics[3]:.4f}")
        print(f"F1 Micro Score: {test_metrics[4]:.4f}")

        #Save test results
        test_results_file = os.path.join(model_checkpoint_dir, "test_results.txt")
        with open(test_results_file, 'w') as f:
            f.write("TEST METRICS:\n")
            f.write(f"Accuracy: {test_metrics[0]:.4f}\n")
            f.write(f"Precision: {test_metrics[1]:.4f}\n")
            f.write(f"Recall: {test_metrics[2]:.4f}\n")
            f.write(f"F1 Macro Score: {test_metrics[3]:.4f}\n")
            f.write(f"F1 Micro: {test_metrics[4]:.4f}\n")
        print(f"Test results saved at {test_results_file}\n")