File size: 1,816 Bytes
d8ed92a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import torch
import config
import sys
import pandas as pd
from mlm_generate_utils import generate_scaffold, calculate_perplexity, calculate_cosine_sim, calculate_hamming_dist
from transformers import AutoModelForMaskedLM, AutoModel, AutoTokenizer
def motif_benchmarking():
path = "/workspace/sg666/MDpLM"
test_sequences = pd.read_csv(path + "/data/membrane/test.csv")['Sequence'].tolist()
tokenizer = AutoTokenizer.from_pretrained(config.CKPT_DIR + "/best_model_epoch")
mlm_model = AutoModelForMaskedLM.from_pretrained(config.CKPT_DIR + "/best_model_epoch")
esm_model = AutoModel.from_pretrained("facebook/esm2_t36_3B_UR50D")
device = torch.device('cuda' if torch.cuda.is_available() else "cpu")
mlm_model.to(device)
esm_model.to(device)
for generate_case in ['uppercase', 'lowercase']:
case_results = []
for original_sequence in test_sequences:
generated_sequence, mask_token_idx = generate_scaffold(original_sequence, generate_case, tokenizer, mlm_model)
perplexity = calculate_perplexity(mlm_model, tokenizer, generated_sequence, mask_token_idx)
cos_sim = calculate_cosine_sim(original_sequence, generated_sequence, tokenizer, esm_model, device)
hamming_distance = calculate_hamming_dist(original_sequence, generated_sequence)
case_results.append([original_sequence, generated_sequence, perplexity, cos_sim, hamming_distance])
print(case_results)
sys.stdout.flush()
df = pd.DataFrame(case_results, columns=['Original Sequence', 'Generated Sequence', 'Perplexity', 'Cosine Similarity', 'Hamming Distance'])
df.to_csv(path + f'/benchmarks/MLM/mlm_{generate_case}_results.csv', index=False)
if __name__ == "__main__":
motif_benchmarking() |