Delete utils
Browse files- utils/data_loader.py +0 -43
- utils/esm_utils.py +0 -15
utils/data_loader.py
DELETED
@@ -1,43 +0,0 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
import torch
|
3 |
-
from torch.utils.data import Dataset, DataLoader
|
4 |
-
from torch.nn.utils.rnn import pad_sequence
|
5 |
-
from esm_utils import get_latents, load_esm2_model
|
6 |
-
import config
|
7 |
-
|
8 |
-
class ProteinDataset(Dataset):
|
9 |
-
def __init__(self, csv_file, tokenizer, model):
|
10 |
-
self.data = pd.read_csv(csv_file).head(4)
|
11 |
-
self.tokenizer = tokenizer
|
12 |
-
self.model = model
|
13 |
-
|
14 |
-
def __len__(self):
|
15 |
-
return len(self.data)
|
16 |
-
|
17 |
-
def __getitem__(self, idx):
|
18 |
-
sequence = self.data.iloc[idx]['Sequence']
|
19 |
-
latents = get_latents(self.model, self.tokenizer, sequence)
|
20 |
-
|
21 |
-
attention_mask = torch.ones_like(latents)
|
22 |
-
attention_mask = torch.mean(attention_mask, dim=-1)
|
23 |
-
|
24 |
-
return latents, attention_mask
|
25 |
-
|
26 |
-
def collate_fn(batch):
|
27 |
-
latents, attention_mask = zip(*batch)
|
28 |
-
latents_padded = pad_sequence([torch.tensor(latent) for latent in latents], batch_first=True, padding_value=0)
|
29 |
-
attention_mask_padded = pad_sequence([torch.tensor(mask) for mask in attention_mask], batch_first=True, padding_value=0)
|
30 |
-
return latents_padded, attention_mask_padded
|
31 |
-
|
32 |
-
def get_dataloaders(config):
|
33 |
-
tokenizer, masked_model, embedding_model = load_esm2_model(config.MODEL_NAME)
|
34 |
-
|
35 |
-
train_dataset = ProteinDataset(config.Loader.DATA_PATH + "/train.csv", tokenizer, embedding_model)
|
36 |
-
val_dataset = ProteinDataset(config.Loader.DATA_PATH + "/val.csv", tokenizer, embedding_model)
|
37 |
-
test_dataset = ProteinDataset(config.Loader.DATA_PATH + "/test.csv", tokenizer, embedding_model)
|
38 |
-
|
39 |
-
train_loader = DataLoader(train_dataset, batch_size=config.Loader.BATCH_SIZE, num_workers=0, shuffle=True, collate_fn=collate_fn)
|
40 |
-
val_loader = DataLoader(val_dataset, batch_size=config.Loader.BATCH_SIZE, num_workers=0, shuffle=False, collate_fn=collate_fn)
|
41 |
-
test_loader = DataLoader(test_dataset, batch_size=config.Loader.BATCH_SIZE, num_workers=0, shuffle=False, collate_fn=collate_fn)
|
42 |
-
|
43 |
-
return train_loader, val_loader, test_loader
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/esm_utils.py
DELETED
@@ -1,15 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import config
|
3 |
-
from transformers import AutoTokenizer, AutoModel, AutoModelForMaskedLM
|
4 |
-
|
5 |
-
def load_esm2_model(model_name):
|
6 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
-
masked_model = AutoModelForMaskedLM.from_pretrained(model_name)
|
8 |
-
embedding_model = AutoModel.from_pretrained(model_name)
|
9 |
-
return tokenizer, masked_model, embedding_model
|
10 |
-
|
11 |
-
def get_latents(model, tokenizer, sequence):
|
12 |
-
inputs = tokenizer(sequence, return_tensors="pt")
|
13 |
-
with torch.no_grad():
|
14 |
-
outputs = model(**inputs)
|
15 |
-
return outputs.last_hidden_state.squeeze(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|