import torch import config import sys import pandas as pd from mlm_generate_utils import generate_scaffold, calculate_perplexity, calculate_cosine_sim, calculate_hamming_dist from transformers import AutoModelForMaskedLM, AutoModel, AutoTokenizer def motif_benchmarking(): path = "/workspace/sg666/MDpLM" test_sequences = pd.read_csv(path + "/data/membrane/test.csv")['Sequence'].tolist() tokenizer = AutoTokenizer.from_pretrained(config.CKPT_DIR + "/best_model_epoch") mlm_model = AutoModelForMaskedLM.from_pretrained(config.CKPT_DIR + "/best_model_epoch") esm_model = AutoModel.from_pretrained("facebook/esm2_t36_3B_UR50D") device = torch.device('cuda' if torch.cuda.is_available() else "cpu") mlm_model.to(device) esm_model.to(device) for generate_case in ['uppercase', 'lowercase']: case_results = [] for original_sequence in test_sequences: generated_sequence, mask_token_idx = generate_scaffold(original_sequence, generate_case, tokenizer, mlm_model) perplexity = calculate_perplexity(mlm_model, tokenizer, generated_sequence, mask_token_idx) cos_sim = calculate_cosine_sim(original_sequence, generated_sequence, tokenizer, esm_model, device) hamming_distance = calculate_hamming_dist(original_sequence, generated_sequence) case_results.append([original_sequence, generated_sequence, perplexity, cos_sim, hamming_distance]) print(case_results) sys.stdout.flush() df = pd.DataFrame(case_results, columns=['Original Sequence', 'Generated Sequence', 'Perplexity', 'Cosine Similarity', 'Hamming Distance']) df.to_csv(path + f'/benchmarks/MLM/mlm_{generate_case}_results.csv', index=False) if __name__ == "__main__": motif_benchmarking()