import pandas as pd path = "/home/sg666/MDpLM/benchmarks/MLM" df = pd.read_csv(path + "/mlm_uppercase_results.csv") all_sequences = df['Original Sequence'].tolist() seq_len_sum = sum(len(seq) for seq in all_sequences) ppls = [ppl for ppl in df['Perplexity'].tolist() if ppl != 10000] ppl_mean = sum(ppls) / len(ppls) cos_mean = df.loc[:, 'Cosine Similarity'].mean() hamming_mean = sum(dist for dist in df['Hamming Distance'].tolist()) / seq_len_sum print(ppl_mean) print(cos_mean) print(hamming_mean)