--- base_model: openai/whisper-tiny datasets: - fleurs language: - id library_name: transformers license: apache-2.0 metrics: - wer tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: Whisper Tiny Indonesian - Chee Li results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Google Fleurs type: fleurs config: he_il split: None args: 'config: id split: test' metrics: - type: wer value: 61.51004728132388 name: Wer --- # Whisper Tiny Indonesian - Chee Li This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Google Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 1.1541 - Wer: 61.5100 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.3796 | 4.4643 | 1000 | 0.7934 | 60.0473 | | 0.097 | 8.9286 | 2000 | 0.8975 | 61.0446 | | 0.0167 | 13.3929 | 3000 | 1.0411 | 61.1998 | | 0.0057 | 17.8571 | 4000 | 1.1252 | 62.8694 | | 0.0044 | 22.3214 | 5000 | 1.1541 | 61.5100 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.20.1