--- base_model: openai/whisper-base datasets: - fleurs language: - ru license: apache-2.0 metrics: - wer tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: Whisper Base Russian 8000 - Chee Li results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Google Fleurs type: fleurs config: ru_ru split: None args: 'config: ru split: test' metrics: - type: wer value: 25.55451630144308 name: Wer --- # Whisper Base Russian 8000 - Chee Li This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Google Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.4957 - Wer: 25.5545 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 850 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0635 | 5.4645 | 1000 | 0.3433 | 22.5882 | | 0.0051 | 10.9290 | 2000 | 0.3879 | 23.0492 | | 0.0019 | 16.3934 | 3000 | 0.4186 | 23.8976 | | 0.0011 | 21.8579 | 4000 | 0.4422 | 24.4522 | | 0.0007 | 27.3224 | 5000 | 0.4613 | 25.0 | | 0.0005 | 32.7869 | 6000 | 0.4781 | 25.3140 | | 0.0004 | 38.2514 | 7000 | 0.4907 | 25.4209 | | 0.0003 | 43.7158 | 8000 | 0.4957 | 25.5545 | ### Framework versions - Transformers 4.43.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1