--- language: - pl license: mit base_model: openai/whisper-large-v3-turbo tags: - hf-asr-leaderboard - generated_from_trainer datasets: - fleurs metrics: - wer model-index: - name: Whisper Turbo - Chee Li results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Google Fleurs type: fleurs config: pl_pl split: None args: 'config: pl split: test' metrics: - name: Wer type: wer value: 16.550181716522225 --- # Whisper Turbo - Chee Li This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the Google Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.2122 - Wer: 16.5502 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0128 | 5.0251 | 1000 | 0.2026 | 11.1336 | | 0.0021 | 10.0503 | 2000 | 0.2049 | 14.8868 | | 0.0003 | 15.0754 | 3000 | 0.2108 | 13.6427 | | 0.0001 | 20.1005 | 4000 | 0.2122 | 16.5502 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1