--- base_model: openai/whisper-tiny datasets: - fleurs language: - it license: apache-2.0 metrics: - wer tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: Whisper Tiny Italian 5k - Chee Li results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Google Fleurs type: fleurs config: it_it split: None args: 'config: it split: test' metrics: - type: wer value: 50.93909245328804 name: Wer --- # Whisper Tiny Italian 5k - Chee Li This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Google Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.6896 - Wer: 50.9391 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.195 | 4.6729 | 1000 | 0.4900 | 53.7054 | | 0.0248 | 9.3458 | 2000 | 0.5791 | 61.4365 | | 0.0076 | 14.0187 | 3000 | 0.6469 | 54.1907 | | 0.0044 | 18.6916 | 4000 | 0.6788 | 51.7641 | | 0.0036 | 23.3645 | 5000 | 0.6896 | 50.9391 | ### Framework versions - Transformers 4.43.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1