CheeLi03 commited on
Commit
c4d7a28
·
verified ·
1 Parent(s): 9eec814

End of training

Browse files
Files changed (1) hide show
  1. README.md +14 -14
README.md CHANGED
@@ -1,22 +1,22 @@
1
  ---
2
- base_model: openai/whisper-base
3
- datasets:
4
- - fleurs
5
  language:
6
  - pt
7
- library_name: transformers
8
  license: apache-2.0
9
- metrics:
10
- - wer
11
  tags:
12
  - hf-asr-leaderboard
13
  - generated_from_trainer
 
 
 
 
14
  model-index:
15
  - name: Whisper Base Portugese Punctuation 5k - Chee Li
16
  results:
17
  - task:
18
- type: automatic-speech-recognition
19
  name: Automatic Speech Recognition
 
20
  dataset:
21
  name: Google Fleurs
22
  type: fleurs
@@ -24,9 +24,9 @@ model-index:
24
  split: None
25
  args: 'config: pt split: test'
26
  metrics:
27
- - type: wer
28
- value: 33.39913517578492
29
- name: Wer
30
  ---
31
 
32
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -36,8 +36,8 @@ should probably proofread and complete it, then remove this comment. -->
36
 
37
  This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Google Fleurs dataset.
38
  It achieves the following results on the evaluation set:
39
- - Loss: 0.8430
40
- - Wer: 33.3991
41
 
42
  ## Model description
43
 
@@ -70,8 +70,8 @@ The following hyperparameters were used during training:
70
 
71
  | Training Loss | Epoch | Step | Validation Loss | Wer |
72
  |:-------------:|:-------:|:----:|:---------------:|:-------:|
73
- | 0.0431 | 5.0251 | 1000 | 0.8316 | 38.6163 |
74
- | 0.0012 | 10.0503 | 2000 | 0.8430 | 33.3991 |
75
 
76
 
77
  ### Framework versions
 
1
  ---
2
+ library_name: transformers
 
 
3
  language:
4
  - pt
 
5
  license: apache-2.0
6
+ base_model: openai/whisper-base
 
7
  tags:
8
  - hf-asr-leaderboard
9
  - generated_from_trainer
10
+ datasets:
11
+ - fleurs
12
+ metrics:
13
+ - wer
14
  model-index:
15
  - name: Whisper Base Portugese Punctuation 5k - Chee Li
16
  results:
17
  - task:
 
18
  name: Automatic Speech Recognition
19
+ type: automatic-speech-recognition
20
  dataset:
21
  name: Google Fleurs
22
  type: fleurs
 
24
  split: None
25
  args: 'config: pt split: test'
26
  metrics:
27
+ - name: Wer
28
+ type: wer
29
+ value: 32.52491069749953
30
  ---
31
 
32
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
36
 
37
  This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Google Fleurs dataset.
38
  It achieves the following results on the evaluation set:
39
+ - Loss: 0.8518
40
+ - Wer: 32.5249
41
 
42
  ## Model description
43
 
 
70
 
71
  | Training Loss | Epoch | Step | Validation Loss | Wer |
72
  |:-------------:|:-------:|:----:|:---------------:|:-------:|
73
+ | 0.0416 | 5.0251 | 1000 | 0.8330 | 38.7902 |
74
+ | 0.0012 | 10.0503 | 2000 | 0.8518 | 32.5249 |
75
 
76
 
77
  ### Framework versions