--- base_model: openai/whisper-tiny datasets: - fleurs language: - vi license: apache-2.0 metrics: - wer tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: Whisper Tiny Viet 5k - Chee Li results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Google Fleurs type: fleurs config: vi_vn split: None args: 'config: vi split: test' metrics: - type: wer value: 85.8096634763816 name: Wer --- # Whisper Tiny Viet 5k - Chee Li This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Google Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 1.0000 - Wer: 85.8097 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.258 | 4.7619 | 1000 | 0.7966 | 83.2124 | | 0.0575 | 9.5238 | 2000 | 0.8570 | 138.7851 | | 0.0117 | 14.2857 | 3000 | 0.9365 | 118.4239 | | 0.0062 | 19.0476 | 4000 | 0.9840 | 90.4832 | | 0.0046 | 23.8095 | 5000 | 1.0000 | 85.8097 | ### Framework versions - Transformers 4.43.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1