ChenlongDeng commited on
Commit
d168f08
·
verified ·
1 Parent(s): a7da4cb

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -0
README.md ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+
5
+ <div align="center">
6
+ <h1>Enabling Discriminative Reasoning in Large Language Models for Legal Judgment Prediction[<a href="">Paper</a>]</h1>
7
+ </div>
8
+
9
+ ## Released Resources
10
+ - 🤗The Huggingface model: Based on Qwen2-7B, we trained a model using the CAIL2018 dataset. [Qwen2-7B-CAIL2018-step-8765](https://huggingface.co/ChenlongDeng/ADAPT-Qwen2-7B-CAIL2018-step-8765)
11
+ - The training trajectories: We release the 80,141 training trajectories of the CAIL2018 dataset in [this link](https://pan.baidu.com/s/1HkLTedi1r6WB0CBvH5dtrA?pwd=p9ex)
12
+
13
+ ## Supported Prompts
14
+ ❗️Note: Our released model needs the `Qwen chat_template` to conduct correct generation.
15
+
16
+ We support the following four prompts to enable reasoning. You should use `the same input format and prompt` to achieve the best performance.
17
+
18
+ ### Prompt 1: ADAPT Reasoning
19
+ ```python
20
+ case_input = f"案件描述:{description}\n被告人姓名:{defendant_name}"
21
+ prompt = "请你采用ADAPT框架分析以上案件中该被告人可能被判处的罪名、适用法条和刑期"
22
+ model_input_str = '\n'.join(case_input, prompt)
23
+ ```
24
+
25
+
26
+ ### Prompt 2: Ask
27
+ ```python
28
+ case_input = f"案件描述:{description}\n被告人姓名:{defendant_name}"
29
+ prompt = "请你用法律理论分析以上案件中该被告人在行为主体,起因、行为和结果,行为对象,犯罪主观四个方面的信息"
30
+ model_input_str = '\n'.join(case_input, prompt)
31
+ ```
32
+
33
+ ### Prompt 3: Article
34
+ ```python
35
+ case_input = f"案件描述:{description}\n被告人姓名:{defendant_name}"
36
+ prompt = "请你依次列出以上案件中被告人适用的法条具体内容,以及适用该法条的原因"
37
+ model_input_str = '\n'.join(case_input, prompt)
38
+ ```
39
+
40
+ ### Prompt 4: Sentencing factors
41
+ ```python
42
+ case_input = f"案件描述:{description}\n被告人姓名:{defendant_name}\n罪名:{crimes}" # e.g., 污染环境罪
43
+ prompt = "请你分析以上案件中的量刑区间和量刑因素,并给出最后的量刑预测结果"
44
+ model_input_str = '\n'.join(case_input, prompt)
45
+ ```
46
+
47
+
48
+
49
+ ## Citation