Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
---
|
4 |
+
|
5 |
+
<div align="center">
|
6 |
+
<h1>Enabling Discriminative Reasoning in Large Language Models for Legal Judgment Prediction[<a href="">Paper</a>]</h1>
|
7 |
+
</div>
|
8 |
+
|
9 |
+
## Released Resources
|
10 |
+
- 🤗The Huggingface model: Based on Qwen2-7B, we trained a model using the CAIL2018 dataset. [Qwen2-7B-CAIL2018-step-8765](https://huggingface.co/ChenlongDeng/ADAPT-Qwen2-7B-CAIL2018-step-8765)
|
11 |
+
- The training trajectories: We release the 80,141 training trajectories of the CAIL2018 dataset in [this link](https://pan.baidu.com/s/1HkLTedi1r6WB0CBvH5dtrA?pwd=p9ex)
|
12 |
+
|
13 |
+
## Supported Prompts
|
14 |
+
❗️Note: Our released model needs the `Qwen chat_template` to conduct correct generation.
|
15 |
+
|
16 |
+
We support the following four prompts to enable reasoning. You should use `the same input format and prompt` to achieve the best performance.
|
17 |
+
|
18 |
+
### Prompt 1: ADAPT Reasoning
|
19 |
+
```python
|
20 |
+
case_input = f"案件描述:{description}\n被告人姓名:{defendant_name}"
|
21 |
+
prompt = "请你采用ADAPT框架分析以上案件中该被告人可能被判处的罪名、适用法条和刑期"
|
22 |
+
model_input_str = '\n'.join(case_input, prompt)
|
23 |
+
```
|
24 |
+
|
25 |
+
|
26 |
+
### Prompt 2: Ask
|
27 |
+
```python
|
28 |
+
case_input = f"案件描述:{description}\n被告人姓名:{defendant_name}"
|
29 |
+
prompt = "请你用法律理论分析以上案件中该被告人在行为主体,起因、行为和结果,行为对象,犯罪主观四个方面的信息"
|
30 |
+
model_input_str = '\n'.join(case_input, prompt)
|
31 |
+
```
|
32 |
+
|
33 |
+
### Prompt 3: Article
|
34 |
+
```python
|
35 |
+
case_input = f"案件描述:{description}\n被告人姓名:{defendant_name}"
|
36 |
+
prompt = "请你依次列出以上案件中被告人适用的法条具体内容,以及适用该法条的原因"
|
37 |
+
model_input_str = '\n'.join(case_input, prompt)
|
38 |
+
```
|
39 |
+
|
40 |
+
### Prompt 4: Sentencing factors
|
41 |
+
```python
|
42 |
+
case_input = f"案件描述:{description}\n被告人姓名:{defendant_name}\n罪名:{crimes}" # e.g., 污染环境罪
|
43 |
+
prompt = "请你分析以上案件中的量刑区间和量刑因素,并给出最后的量刑预测结果"
|
44 |
+
model_input_str = '\n'.join(case_input, prompt)
|
45 |
+
```
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
## Citation
|