Chernoffface commited on
Commit
8a4eb18
·
verified ·
1 Parent(s): 308a67f

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
9
+ metrics:
10
+ - accuracy
11
+ widget:
12
+ - text: Airborne Data Acquisition
13
+ - text: 'Juni Fachsprachliche Lehrwerke: Ansprüche und Realität 01.'
14
+ - text: Grundlagen der Fachdidaktik Pädagogik
15
+ - text: Die Veranstaltung zielt auf die Vermittlung von Kenntnissen und Fertigkeiten
16
+ im Bereich der quantitativ orientierten Forschungsmethoden.
17
+ - text: 01-15-0007-ue Information Management
18
+ pipeline_tag: text-classification
19
+ inference: false
20
+ ---
21
+
22
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
23
+
24
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
25
+
26
+ The model has been trained using an efficient few-shot learning technique that involves:
27
+
28
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
29
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
30
+
31
+ ## Model Details
32
+
33
+ ### Model Description
34
+ - **Model Type:** SetFit
35
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
36
+ - **Classification head:** a OneVsRestClassifier instance
37
+ - **Maximum Sequence Length:** 512 tokens
38
+ <!-- - **Number of Classes:** Unknown -->
39
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
40
+ <!-- - **Language:** Unknown -->
41
+ <!-- - **License:** Unknown -->
42
+
43
+ ### Model Sources
44
+
45
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
46
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
47
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
48
+
49
+ ## Uses
50
+
51
+ ### Direct Use for Inference
52
+
53
+ First install the SetFit library:
54
+
55
+ ```bash
56
+ pip install setfit
57
+ ```
58
+
59
+ Then you can load this model and run inference.
60
+
61
+ ```python
62
+ from setfit import SetFitModel
63
+
64
+ # Download from the 🤗 Hub
65
+ model = SetFitModel.from_pretrained("Chernoffface/fs-setfit-multilable-model")
66
+ # Run inference
67
+ preds = model("Airborne Data Acquisition")
68
+ ```
69
+
70
+ <!--
71
+ ### Downstream Use
72
+
73
+ *List how someone could finetune this model on their own dataset.*
74
+ -->
75
+
76
+ <!--
77
+ ### Out-of-Scope Use
78
+
79
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
80
+ -->
81
+
82
+ <!--
83
+ ## Bias, Risks and Limitations
84
+
85
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
86
+ -->
87
+
88
+ <!--
89
+ ### Recommendations
90
+
91
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
92
+ -->
93
+
94
+ ## Training Details
95
+
96
+ ### Training Set Metrics
97
+ | Training set | Min | Median | Max |
98
+ |:-------------|:----|:--------|:----|
99
+ | Word count | 2 | 17.0114 | 74 |
100
+
101
+ ### Training Hyperparameters
102
+ - batch_size: (16, 16)
103
+ - num_epochs: (1, 1)
104
+ - max_steps: -1
105
+ - sampling_strategy: oversampling
106
+ - num_iterations: 20
107
+ - body_learning_rate: (2e-05, 2e-05)
108
+ - head_learning_rate: 2e-05
109
+ - loss: CosineSimilarityLoss
110
+ - distance_metric: cosine_distance
111
+ - margin: 0.25
112
+ - end_to_end: False
113
+ - use_amp: False
114
+ - warmup_proportion: 0.1
115
+ - l2_weight: 0.01
116
+ - seed: 42
117
+ - eval_max_steps: -1
118
+ - load_best_model_at_end: False
119
+
120
+ ### Training Results
121
+ | Epoch | Step | Training Loss | Validation Loss |
122
+ |:------:|:----:|:-------------:|:---------------:|
123
+ | 0.0045 | 1 | 0.259 | - |
124
+ | 0.2273 | 50 | 0.1768 | - |
125
+ | 0.4545 | 100 | 0.0879 | - |
126
+ | 0.6818 | 150 | 0.0574 | - |
127
+ | 0.9091 | 200 | 0.0404 | - |
128
+
129
+ ### Framework Versions
130
+ - Python: 3.12.3
131
+ - SetFit: 1.1.0
132
+ - Sentence Transformers: 3.0.0
133
+ - Transformers: 4.43.1
134
+ - PyTorch: 2.3.1+cu121
135
+ - Datasets: 2.20.0
136
+ - Tokenizers: 0.19.1
137
+
138
+ ## Citation
139
+
140
+ ### BibTeX
141
+ ```bibtex
142
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
143
+ doi = {10.48550/ARXIV.2209.11055},
144
+ url = {https://arxiv.org/abs/2209.11055},
145
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
146
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
147
+ title = {Efficient Few-Shot Learning Without Prompts},
148
+ publisher = {arXiv},
149
+ year = {2022},
150
+ copyright = {Creative Commons Attribution 4.0 International}
151
+ }
152
+ ```
153
+
154
+ <!--
155
+ ## Glossary
156
+
157
+ *Clearly define terms in order to be accessible across audiences.*
158
+ -->
159
+
160
+ <!--
161
+ ## Model Card Authors
162
+
163
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
164
+ -->
165
+
166
+ <!--
167
+ ## Model Card Contact
168
+
169
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
170
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.43.1",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f5c6feeeda047008431827c779893a9c28ad3e954b2cafb781f20d073c28254
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2d733806cf3e6c968cc2bba9515ba624d003655b4e2f6eecbb0f92f8a8ed4f9
3
+ size 72196
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "MPNetTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff