Update README.md
Browse files
README.md
CHANGED
@@ -1,131 +1,153 @@
|
|
1 |
-
---
|
2 |
-
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
3 |
-
library_name: setfit
|
4 |
-
metrics:
|
5 |
-
- accuracy
|
6 |
-
pipeline_tag: text-classification
|
7 |
-
tags:
|
8 |
-
- setfit
|
9 |
-
- sentence-transformers
|
10 |
-
- text-classification
|
11 |
-
- generated_from_setfit_trainer
|
12 |
-
widget: []
|
13 |
-
inference: true
|
14 |
-
---
|
15 |
-
|
16 |
-
# SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
17 |
-
|
18 |
-
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
|
19 |
-
|
20 |
-
The model has been trained using an efficient few-shot learning technique that involves:
|
21 |
-
|
22 |
-
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
23 |
-
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
24 |
-
|
25 |
-
## Model Details
|
26 |
-
|
27 |
-
### Model Description
|
28 |
-
- **Model Type:** SetFit
|
29 |
-
- **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
|
30 |
-
- **Classification head:** a OneVsRestClassifier instance
|
31 |
-
- **Maximum Sequence Length:** 128 tokens
|
32 |
-
- **Number of Classes:** 6 classes
|
33 |
-
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
34 |
-
<!-- - **Language:** Unknown -->
|
35 |
-
<!-- - **License:** Unknown -->
|
36 |
-
|
37 |
-
### Model Sources
|
38 |
-
|
39 |
-
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
40 |
-
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
41 |
-
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
42 |
-
|
43 |
-
## Uses
|
44 |
-
|
45 |
-
### Direct Use for Inference
|
46 |
-
|
47 |
-
First install the SetFit library:
|
48 |
-
|
49 |
-
```bash
|
50 |
-
pip install setfit
|
51 |
-
```
|
52 |
-
|
53 |
-
Then you can load this model and run inference.
|
54 |
-
|
55 |
-
```python
|
56 |
-
from setfit import SetFitModel
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
##
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
-->
|
|
|
1 |
+
---
|
2 |
+
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget: []
|
13 |
+
inference: true
|
14 |
+
---
|
15 |
+
|
16 |
+
# SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
17 |
+
|
18 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
|
19 |
+
|
20 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
21 |
+
|
22 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
23 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
24 |
+
|
25 |
+
## Model Details
|
26 |
+
|
27 |
+
### Model Description
|
28 |
+
- **Model Type:** SetFit
|
29 |
+
- **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
|
30 |
+
- **Classification head:** a OneVsRestClassifier instance
|
31 |
+
- **Maximum Sequence Length:** 128 tokens
|
32 |
+
- **Number of Classes:** 6 classes
|
33 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
34 |
+
<!-- - **Language:** Unknown -->
|
35 |
+
<!-- - **License:** Unknown -->
|
36 |
+
|
37 |
+
### Model Sources
|
38 |
+
|
39 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
40 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
41 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
42 |
+
|
43 |
+
## Uses
|
44 |
+
|
45 |
+
### Direct Use for Inference
|
46 |
+
|
47 |
+
First install the SetFit library:
|
48 |
+
|
49 |
+
```bash
|
50 |
+
pip install setfit
|
51 |
+
```
|
52 |
+
|
53 |
+
Then you can load this model and run inference.
|
54 |
+
|
55 |
+
```python
|
56 |
+
from setfit import SetFitModel
|
57 |
+
import torch
|
58 |
+
|
59 |
+
# load model
|
60 |
+
model = SetFitModel.from_pretrained("Chernoffface/fs-setfit-multilable-model")
|
61 |
+
|
62 |
+
# set labels
|
63 |
+
labels = [
|
64 |
+
"Data Analytics & KI",
|
65 |
+
"Softwareentwicklung",
|
66 |
+
"Nutzerzentriertes Design",
|
67 |
+
"IT-Architektur",
|
68 |
+
"Hardware/Robotikentwicklung",
|
69 |
+
"Quantencomputing"
|
70 |
+
]
|
71 |
+
|
72 |
+
# define course description
|
73 |
+
input_text = " Blockchain Projektpraktikum: Diese Veranstaltung richtet sich an Studierende, die die Vorlesung Cryptocurrencies besucht oder sich anderweitig mit Blockchain-Technologien beschäftigt haben und einige Aspekte dieses Themenkomplexes eingehender verstehen und untersuchen wollen. Sie bietet eine Plattform, um neuartige Anwendungen basierend auf Blockchain Technologie auf ihre Umsetzbarkeit und Sinnhaftigkeit zu überprüfen. Nach einer Einführung zu den Themen Blockchain Konzepte, Projektmanagement und Blockchain Development, sollen komplexe kryptographische Systeme und Bausteine aus dem Bereich Kryptowährung und Blockchain in Teamarbeit verstanden und in einem dezentralen System implementiert werden. Dabei wird die eigenständige Konzeption eines Projektes gefordert, das im Verlauf der Veranstaltung von den Studierenden geplant und umgesetzt werden soll. Die Studierenden erhalten in diesem Praktikum erste Erfahrungen mit der Umsetzung eines komplexeren Entwicklungsprojektes. Im Rahmen des Projektpraktikums erarbeiten die Studierenden weiter fortgeschrittene Konzepte im Bereich Blockchain und Blockchain Entwicklung, wie beispielsweise Performance- und Sicherheitsaspekte, präsentieren diese in der Gruppe und integrieren sie in ihre Anwendung."
|
74 |
+
|
75 |
+
# predict technical future skill
|
76 |
+
preds = model([input_text])
|
77 |
+
|
78 |
+
# convert tensor to label
|
79 |
+
predicted_labels = [labels[i] for i, pred in enumerate(preds[0]) if pred == 1]
|
80 |
+
|
81 |
+
# print resolution
|
82 |
+
print(predicted_labels)
|
83 |
+
|
84 |
+
```
|
85 |
+
|
86 |
+
<!--
|
87 |
+
### Downstream Use
|
88 |
+
|
89 |
+
*List how someone could finetune this model on their own dataset.*
|
90 |
+
-->
|
91 |
+
|
92 |
+
<!--
|
93 |
+
### Out-of-Scope Use
|
94 |
+
|
95 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
96 |
+
-->
|
97 |
+
|
98 |
+
<!--
|
99 |
+
## Bias, Risks and Limitations
|
100 |
+
|
101 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
102 |
+
-->
|
103 |
+
|
104 |
+
<!--
|
105 |
+
### Recommendations
|
106 |
+
|
107 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
108 |
+
-->
|
109 |
+
|
110 |
+
## Training Details
|
111 |
+
|
112 |
+
### Framework Versions
|
113 |
+
- Python: 3.12.7
|
114 |
+
- SetFit: 1.1.0
|
115 |
+
- Sentence Transformers: 3.2.1
|
116 |
+
- Transformers: 4.45.2
|
117 |
+
- PyTorch: 2.5.0+cu121
|
118 |
+
- Datasets: 2.19.1
|
119 |
+
- Tokenizers: 0.20.1
|
120 |
+
|
121 |
+
## Citation
|
122 |
+
|
123 |
+
### BibTeX
|
124 |
+
```bibtex
|
125 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
126 |
+
doi = {10.48550/ARXIV.2209.11055},
|
127 |
+
url = {https://arxiv.org/abs/2209.11055},
|
128 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
129 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
130 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
131 |
+
publisher = {arXiv},
|
132 |
+
year = {2022},
|
133 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
134 |
+
}
|
135 |
+
```
|
136 |
+
|
137 |
+
<!--
|
138 |
+
## Glossary
|
139 |
+
|
140 |
+
*Clearly define terms in order to be accessible across audiences.*
|
141 |
+
-->
|
142 |
+
|
143 |
+
<!--
|
144 |
+
## Model Card Authors
|
145 |
+
|
146 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
147 |
+
-->
|
148 |
+
|
149 |
+
<!--
|
150 |
+
## Model Card Contact
|
151 |
+
|
152 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
153 |
-->
|