Chernoffface commited on
Commit
a0c4487
·
verified ·
1 Parent(s): 02cc311

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +152 -130
README.md CHANGED
@@ -1,131 +1,153 @@
1
- ---
2
- base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
3
- library_name: setfit
4
- metrics:
5
- - accuracy
6
- pipeline_tag: text-classification
7
- tags:
8
- - setfit
9
- - sentence-transformers
10
- - text-classification
11
- - generated_from_setfit_trainer
12
- widget: []
13
- inference: true
14
- ---
15
-
16
- # SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
17
-
18
- This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
19
-
20
- The model has been trained using an efficient few-shot learning technique that involves:
21
-
22
- 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
23
- 2. Training a classification head with features from the fine-tuned Sentence Transformer.
24
-
25
- ## Model Details
26
-
27
- ### Model Description
28
- - **Model Type:** SetFit
29
- - **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
30
- - **Classification head:** a OneVsRestClassifier instance
31
- - **Maximum Sequence Length:** 128 tokens
32
- - **Number of Classes:** 6 classes
33
- <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
34
- <!-- - **Language:** Unknown -->
35
- <!-- - **License:** Unknown -->
36
-
37
- ### Model Sources
38
-
39
- - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
40
- - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
41
- - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
42
-
43
- ## Uses
44
-
45
- ### Direct Use for Inference
46
-
47
- First install the SetFit library:
48
-
49
- ```bash
50
- pip install setfit
51
- ```
52
-
53
- Then you can load this model and run inference.
54
-
55
- ```python
56
- from setfit import SetFitModel
57
-
58
- # Download from the 🤗 Hub
59
- model = SetFitModel.from_pretrained("Chernoffface/fs-setfit-multilable-model")
60
- # Run inference
61
- preds = model("I loved the spiderman movie!")
62
- ```
63
-
64
- <!--
65
- ### Downstream Use
66
-
67
- *List how someone could finetune this model on their own dataset.*
68
- -->
69
-
70
- <!--
71
- ### Out-of-Scope Use
72
-
73
- *List how the model may foreseeably be misused and address what users ought not to do with the model.*
74
- -->
75
-
76
- <!--
77
- ## Bias, Risks and Limitations
78
-
79
- *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
80
- -->
81
-
82
- <!--
83
- ### Recommendations
84
-
85
- *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
86
- -->
87
-
88
- ## Training Details
89
-
90
- ### Framework Versions
91
- - Python: 3.12.7
92
- - SetFit: 1.1.0
93
- - Sentence Transformers: 3.2.1
94
- - Transformers: 4.45.2
95
- - PyTorch: 2.5.0+cu121
96
- - Datasets: 2.19.1
97
- - Tokenizers: 0.20.1
98
-
99
- ## Citation
100
-
101
- ### BibTeX
102
- ```bibtex
103
- @article{https://doi.org/10.48550/arxiv.2209.11055,
104
- doi = {10.48550/ARXIV.2209.11055},
105
- url = {https://arxiv.org/abs/2209.11055},
106
- author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
107
- keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
108
- title = {Efficient Few-Shot Learning Without Prompts},
109
- publisher = {arXiv},
110
- year = {2022},
111
- copyright = {Creative Commons Attribution 4.0 International}
112
- }
113
- ```
114
-
115
- <!--
116
- ## Glossary
117
-
118
- *Clearly define terms in order to be accessible across audiences.*
119
- -->
120
-
121
- <!--
122
- ## Model Card Authors
123
-
124
- *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
125
- -->
126
-
127
- <!--
128
- ## Model Card Contact
129
-
130
- *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
  -->
 
1
+ ---
2
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget: []
13
+ inference: true
14
+ ---
15
+
16
+ # SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
17
+
18
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
19
+
20
+ The model has been trained using an efficient few-shot learning technique that involves:
21
+
22
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
23
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
24
+
25
+ ## Model Details
26
+
27
+ ### Model Description
28
+ - **Model Type:** SetFit
29
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
30
+ - **Classification head:** a OneVsRestClassifier instance
31
+ - **Maximum Sequence Length:** 128 tokens
32
+ - **Number of Classes:** 6 classes
33
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
34
+ <!-- - **Language:** Unknown -->
35
+ <!-- - **License:** Unknown -->
36
+
37
+ ### Model Sources
38
+
39
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
40
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
41
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
42
+
43
+ ## Uses
44
+
45
+ ### Direct Use for Inference
46
+
47
+ First install the SetFit library:
48
+
49
+ ```bash
50
+ pip install setfit
51
+ ```
52
+
53
+ Then you can load this model and run inference.
54
+
55
+ ```python
56
+ from setfit import SetFitModel
57
+ import torch
58
+
59
+ # load model
60
+ model = SetFitModel.from_pretrained("Chernoffface/fs-setfit-multilable-model")
61
+
62
+ # set labels
63
+ labels = [
64
+ "Data Analytics & KI",
65
+ "Softwareentwicklung",
66
+ "Nutzerzentriertes Design",
67
+ "IT-Architektur",
68
+ "Hardware/Robotikentwicklung",
69
+ "Quantencomputing"
70
+ ]
71
+
72
+ # define course description
73
+ input_text = " Blockchain Projektpraktikum: Diese Veranstaltung richtet sich an Studierende, die die Vorlesung Cryptocurrencies besucht oder sich anderweitig mit Blockchain-Technologien beschäftigt haben und einige Aspekte dieses Themenkomplexes eingehender verstehen und untersuchen wollen. Sie bietet eine Plattform, um neuartige Anwendungen basierend auf Blockchain Technologie auf ihre Umsetzbarkeit und Sinnhaftigkeit zu überprüfen. Nach einer Einführung zu den Themen Blockchain Konzepte, Projektmanagement und Blockchain Development, sollen komplexe kryptographische Systeme und Bausteine aus dem Bereich Kryptowährung und Blockchain in Teamarbeit verstanden und in einem dezentralen System implementiert werden. Dabei wird die eigenständige Konzeption eines Projektes gefordert, das im Verlauf der Veranstaltung von den Studierenden geplant und umgesetzt werden soll. Die Studierenden erhalten in diesem Praktikum erste Erfahrungen mit der Umsetzung eines komplexeren Entwicklungsprojektes. Im Rahmen des Projektpraktikums erarbeiten die Studierenden weiter fortgeschrittene Konzepte im Bereich Blockchain und Blockchain Entwicklung, wie beispielsweise Performance- und Sicherheitsaspekte, präsentieren diese in der Gruppe und integrieren sie in ihre Anwendung."
74
+
75
+ # predict technical future skill
76
+ preds = model([input_text])
77
+
78
+ # convert tensor to label
79
+ predicted_labels = [labels[i] for i, pred in enumerate(preds[0]) if pred == 1]
80
+
81
+ # print resolution
82
+ print(predicted_labels)
83
+
84
+ ```
85
+
86
+ <!--
87
+ ### Downstream Use
88
+
89
+ *List how someone could finetune this model on their own dataset.*
90
+ -->
91
+
92
+ <!--
93
+ ### Out-of-Scope Use
94
+
95
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
96
+ -->
97
+
98
+ <!--
99
+ ## Bias, Risks and Limitations
100
+
101
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
102
+ -->
103
+
104
+ <!--
105
+ ### Recommendations
106
+
107
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
108
+ -->
109
+
110
+ ## Training Details
111
+
112
+ ### Framework Versions
113
+ - Python: 3.12.7
114
+ - SetFit: 1.1.0
115
+ - Sentence Transformers: 3.2.1
116
+ - Transformers: 4.45.2
117
+ - PyTorch: 2.5.0+cu121
118
+ - Datasets: 2.19.1
119
+ - Tokenizers: 0.20.1
120
+
121
+ ## Citation
122
+
123
+ ### BibTeX
124
+ ```bibtex
125
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
126
+ doi = {10.48550/ARXIV.2209.11055},
127
+ url = {https://arxiv.org/abs/2209.11055},
128
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
129
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
130
+ title = {Efficient Few-Shot Learning Without Prompts},
131
+ publisher = {arXiv},
132
+ year = {2022},
133
+ copyright = {Creative Commons Attribution 4.0 International}
134
+ }
135
+ ```
136
+
137
+ <!--
138
+ ## Glossary
139
+
140
+ *Clearly define terms in order to be accessible across audiences.*
141
+ -->
142
+
143
+ <!--
144
+ ## Model Card Authors
145
+
146
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
147
+ -->
148
+
149
+ <!--
150
+ ## Model Card Contact
151
+
152
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
153
  -->