Chernoffface
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,487 +1,493 @@
|
|
1 |
-
---
|
2 |
-
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
3 |
-
library_name: setfit
|
4 |
-
metrics:
|
5 |
-
- accuracy
|
6 |
-
pipeline_tag: text-classification
|
7 |
-
tags:
|
8 |
-
- setfit
|
9 |
-
- sentence-transformers
|
10 |
-
- text-classification
|
11 |
-
- generated_from_setfit_trainer
|
12 |
-
widget:
|
13 |
-
- text: How much should I invest in communication activities?
|
14 |
-
- text: In addition, we will consider public reactions and reviews of these works.
|
15 |
-
- text: Grundlagen der Fachdidaktik Pädagogik
|
16 |
-
- text:
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
-
|
41 |
-
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
- **
|
52 |
-
- **
|
53 |
-
- **
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
```
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
model
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
<!--
|
83 |
-
###
|
84 |
-
|
85 |
-
*List how
|
86 |
-
-->
|
87 |
-
|
88 |
-
<!--
|
89 |
-
|
90 |
-
|
91 |
-
*
|
92 |
-
-->
|
93 |
-
|
94 |
-
<!--
|
95 |
-
|
96 |
-
|
97 |
-
*What are
|
98 |
-
-->
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
-
|
115 |
-
-
|
116 |
-
-
|
117 |
-
-
|
118 |
-
-
|
119 |
-
-
|
120 |
-
-
|
121 |
-
-
|
122 |
-
-
|
123 |
-
-
|
124 |
-
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
134 |
-
|
135 |
-
| 0.
|
136 |
-
| 0.
|
137 |
-
| 0.
|
138 |
-
| 0.
|
139 |
-
| 0.
|
140 |
-
| 0.
|
141 |
-
| 0.
|
142 |
-
| 0.
|
143 |
-
| 0.
|
144 |
-
| 0.
|
145 |
-
| 0.
|
146 |
-
| 0.
|
147 |
-
| 0.
|
148 |
-
| 0.
|
149 |
-
| 0.
|
150 |
-
| 0.
|
151 |
-
| 0.
|
152 |
-
| 0.
|
153 |
-
| 0.
|
154 |
-
| 0.
|
155 |
-
| 0.
|
156 |
-
| 0.
|
157 |
-
| 0.
|
158 |
-
| 0.
|
159 |
-
| 0.
|
160 |
-
| 0.
|
161 |
-
| 0.
|
162 |
-
| 0.
|
163 |
-
| 0.
|
164 |
-
| 0.
|
165 |
-
| 0.
|
166 |
-
| 0.
|
167 |
-
| 0.
|
168 |
-
| 0.
|
169 |
-
| 0.
|
170 |
-
| 0.
|
171 |
-
| 0.
|
172 |
-
| 0.
|
173 |
-
| 0.
|
174 |
-
| 0.
|
175 |
-
| 0.
|
176 |
-
| 0.
|
177 |
-
| 0.
|
178 |
-
| 0.
|
179 |
-
| 0.
|
180 |
-
| 0.
|
181 |
-
| 0.
|
182 |
-
| 0.
|
183 |
-
| 0.
|
184 |
-
| 0.
|
185 |
-
| 0.
|
186 |
-
| 0.
|
187 |
-
| 0.
|
188 |
-
| 0.
|
189 |
-
| 0.
|
190 |
-
| 0.
|
191 |
-
| 0.
|
192 |
-
| 0.
|
193 |
-
| 0.
|
194 |
-
| 0.
|
195 |
-
| 0.
|
196 |
-
| 0.
|
197 |
-
| 0.
|
198 |
-
| 0.
|
199 |
-
| 0.
|
200 |
-
| 0.
|
201 |
-
| 0.
|
202 |
-
| 0.
|
203 |
-
| 0.
|
204 |
-
| 0.
|
205 |
-
| 0.
|
206 |
-
| 0.
|
207 |
-
| 0.
|
208 |
-
| 0.
|
209 |
-
| 0.
|
210 |
-
| 0.
|
211 |
-
| 0.
|
212 |
-
| 0.
|
213 |
-
| 0.
|
214 |
-
| 0.
|
215 |
-
| 0.
|
216 |
-
| 0.
|
217 |
-
| 0.
|
218 |
-
| 0.
|
219 |
-
| 0.
|
220 |
-
| 0.
|
221 |
-
| 0.
|
222 |
-
| 0.
|
223 |
-
| 0.
|
224 |
-
| 0.
|
225 |
-
| 0.
|
226 |
-
| 0.
|
227 |
-
| 0.
|
228 |
-
| 0.
|
229 |
-
| 0.
|
230 |
-
| 0.
|
231 |
-
| 0.
|
232 |
-
| 0.
|
233 |
-
| 0.
|
234 |
-
| 0.
|
235 |
-
| 0.
|
236 |
-
| 0.
|
237 |
-
| 0.
|
238 |
-
| 0.
|
239 |
-
| 0.
|
240 |
-
| 0.
|
241 |
-
| 0.
|
242 |
-
| 0.
|
243 |
-
| 0.
|
244 |
-
| 0.
|
245 |
-
| 0.
|
246 |
-
| 0.
|
247 |
-
| 0.
|
248 |
-
| 0.
|
249 |
-
| 0.
|
250 |
-
| 0.
|
251 |
-
| 0.
|
252 |
-
| 0.
|
253 |
-
| 0.
|
254 |
-
| 0.
|
255 |
-
| 0.
|
256 |
-
| 0.
|
257 |
-
| 0.
|
258 |
-
| 0.
|
259 |
-
| 0.
|
260 |
-
| 0.
|
261 |
-
| 0.
|
262 |
-
| 0.
|
263 |
-
| 0.
|
264 |
-
| 0.
|
265 |
-
| 0.
|
266 |
-
| 0.
|
267 |
-
| 0.
|
268 |
-
| 0.
|
269 |
-
| 0.
|
270 |
-
| 0.
|
271 |
-
| 0.
|
272 |
-
| 0.
|
273 |
-
| 0.
|
274 |
-
| 0.
|
275 |
-
| 0.
|
276 |
-
| 0.
|
277 |
-
| 0.
|
278 |
-
| 0.
|
279 |
-
| 0.
|
280 |
-
| 0.
|
281 |
-
| 0.
|
282 |
-
| 0.
|
283 |
-
| 0.
|
284 |
-
| 0.
|
285 |
-
| 0.
|
286 |
-
| 0.
|
287 |
-
|
|
288 |
-
|
|
289 |
-
|
|
290 |
-
|
|
291 |
-
|
|
292 |
-
|
|
293 |
-
| 1.
|
294 |
-
| 1.
|
295 |
-
| 1.
|
296 |
-
| 1.
|
297 |
-
| 1.
|
298 |
-
| 1.
|
299 |
-
| 1.
|
300 |
-
| 1.
|
301 |
-
| 1.
|
302 |
-
| 1.
|
303 |
-
| 1.
|
304 |
-
| 1.
|
305 |
-
| 1.
|
306 |
-
| 1.
|
307 |
-
| 1.
|
308 |
-
| 1.
|
309 |
-
| 1.
|
310 |
-
| 1.
|
311 |
-
| 1.
|
312 |
-
| 1.
|
313 |
-
| 1.
|
314 |
-
| 1.
|
315 |
-
| 1.
|
316 |
-
| 1.
|
317 |
-
| 1.
|
318 |
-
| 1.
|
319 |
-
| 1.
|
320 |
-
| 1.
|
321 |
-
| 1.
|
322 |
-
| 1.
|
323 |
-
| 1.
|
324 |
-
| 1.
|
325 |
-
| 1.
|
326 |
-
| 1.
|
327 |
-
| 1.
|
328 |
-
| 1.
|
329 |
-
| 1.
|
330 |
-
| 1.
|
331 |
-
| 1.
|
332 |
-
| 1.
|
333 |
-
| 1.
|
334 |
-
| 1.
|
335 |
-
| 1.
|
336 |
-
| 1.
|
337 |
-
| 1.
|
338 |
-
| 1.
|
339 |
-
| 1.
|
340 |
-
| 1.
|
341 |
-
| 1.
|
342 |
-
| 1.
|
343 |
-
| 1.
|
344 |
-
| 1.
|
345 |
-
| 1.
|
346 |
-
| 1.
|
347 |
-
| 1.
|
348 |
-
| 1.
|
349 |
-
| 1.
|
350 |
-
| 1.
|
351 |
-
| 1.
|
352 |
-
| 1.
|
353 |
-
| 1.
|
354 |
-
| 1.
|
355 |
-
| 1.
|
356 |
-
| 1.
|
357 |
-
| 1.
|
358 |
-
| 1.
|
359 |
-
| 1.
|
360 |
-
| 1.
|
361 |
-
| 1.
|
362 |
-
| 1.
|
363 |
-
| 1.
|
364 |
-
| 1.
|
365 |
-
| 1.
|
366 |
-
| 1.
|
367 |
-
| 1.
|
368 |
-
| 1.
|
369 |
-
| 1.
|
370 |
-
| 1.
|
371 |
-
| 1.
|
372 |
-
| 1.
|
373 |
-
| 1.
|
374 |
-
| 1.
|
375 |
-
| 1.
|
376 |
-
| 1.
|
377 |
-
| 1.
|
378 |
-
| 1.
|
379 |
-
| 1.
|
380 |
-
| 1.
|
381 |
-
| 1.
|
382 |
-
| 1.
|
383 |
-
| 1.
|
384 |
-
| 1.
|
385 |
-
| 1.
|
386 |
-
| 1.
|
387 |
-
| 1.
|
388 |
-
| 1.
|
389 |
-
| 1.
|
390 |
-
| 1.
|
391 |
-
| 1.
|
392 |
-
| 1.
|
393 |
-
| 1.
|
394 |
-
| 1.
|
395 |
-
| 1.
|
396 |
-
| 1.
|
397 |
-
| 1.
|
398 |
-
| 1.
|
399 |
-
| 1.
|
400 |
-
| 1.
|
401 |
-
| 1.
|
402 |
-
| 1.
|
403 |
-
| 1.
|
404 |
-
| 1.
|
405 |
-
| 1.
|
406 |
-
| 1.
|
407 |
-
| 1.
|
408 |
-
| 1.
|
409 |
-
| 1.
|
410 |
-
| 1.
|
411 |
-
| 1.
|
412 |
-
| 1.
|
413 |
-
| 1.
|
414 |
-
| 1.
|
415 |
-
| 1.
|
416 |
-
| 1.
|
417 |
-
| 1.
|
418 |
-
| 1.
|
419 |
-
| 1.
|
420 |
-
| 1.
|
421 |
-
| 1.
|
422 |
-
| 1.
|
423 |
-
| 1.
|
424 |
-
| 1.
|
425 |
-
| 1.
|
426 |
-
| 1.
|
427 |
-
| 1.
|
428 |
-
| 1.
|
429 |
-
| 1.
|
430 |
-
| 1.
|
431 |
-
| 1.
|
432 |
-
| 1.
|
433 |
-
| 1.
|
434 |
-
| 1.
|
435 |
-
| 1.
|
436 |
-
| 1.
|
437 |
-
| 1.
|
438 |
-
| 1.
|
439 |
-
| 1.
|
440 |
-
| 1.
|
441 |
-
| 1.
|
442 |
-
| 1.
|
443 |
-
| 1.
|
444 |
-
| 1.
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
}
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
<!--
|
478 |
-
##
|
479 |
-
|
480 |
-
*
|
481 |
-
-->
|
482 |
-
|
483 |
-
<!--
|
484 |
-
## Model Card
|
485 |
-
|
486 |
-
*
|
|
|
|
|
|
|
|
|
|
|
|
|
487 |
-->
|
|
|
1 |
+
---
|
2 |
+
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: How much should I invest in communication activities?
|
14 |
+
- text: In addition, we will consider public reactions and reviews of these works.
|
15 |
+
- text: Grundlagen der Fachdidaktik Pädagogik
|
16 |
+
- text: >-
|
17 |
+
Die Einzelthemen umfassen: * Hard- and Software-Architecture of Modern Game
|
18 |
+
Systems * Time Management in Milliseconds * Asset Loading and Compression *
|
19 |
+
Physically Based Realtime Rendering and Animations * Handling of Large Game
|
20 |
+
Scenes * Audio Simulation and Mixing * Constraint-Based Physics Simulation *
|
21 |
+
Artificial Intelligence for Games * Multiplayer-Networking * Procedural
|
22 |
+
Content Creation * Integration of Scripting Languages * Optimization and
|
23 |
+
parallelization of CPU and GPU Code Die Übungen enthalten Theorie- und
|
24 |
+
Praxisanteile.
|
25 |
+
- text: >-
|
26 |
+
Wie entsteht überhaupt eine Ausstellung und in diesem Fall: eine, die
|
27 |
+
weniger auf den Wert des Originals als die Kreativität ihrer Besucher setzt?
|
28 |
+
inference: false
|
29 |
+
language:
|
30 |
+
- de
|
31 |
+
- en
|
32 |
+
---
|
33 |
+
|
34 |
+
# SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
35 |
+
|
36 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A MultiOutputClassifier instance is used for classification.
|
37 |
+
|
38 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
39 |
+
|
40 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
41 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
42 |
+
|
43 |
+
## Model Details
|
44 |
+
|
45 |
+
### Model Description
|
46 |
+
- **Model Type:** SetFit
|
47 |
+
- **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
|
48 |
+
- **Classification head:** a MultiOutputClassifier instance
|
49 |
+
- **Maximum Sequence Length:** 128 tokens
|
50 |
+
- **Number of Classes:** 6 classes
|
51 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
52 |
+
<!-- - **Language:** Unknown -->
|
53 |
+
<!-- - **License:** Unknown -->
|
54 |
+
|
55 |
+
### Model Sources
|
56 |
+
|
57 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
58 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
59 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
60 |
+
|
61 |
+
## Uses
|
62 |
+
|
63 |
+
### Direct Use for Inference
|
64 |
+
|
65 |
+
First install the SetFit library:
|
66 |
+
|
67 |
+
```bash
|
68 |
+
pip install setfit
|
69 |
+
```
|
70 |
+
|
71 |
+
Then you can load this model and run inference.
|
72 |
+
|
73 |
+
```python
|
74 |
+
from setfit import SetFitModel
|
75 |
+
|
76 |
+
# Download from the 🤗 Hub
|
77 |
+
model = SetFitModel.from_pretrained("Chernoffface/fs-setfit-multilable-model")
|
78 |
+
# Run inference
|
79 |
+
preds = model("Grundlagen der Fachdidaktik Pädagogik")
|
80 |
+
```
|
81 |
+
|
82 |
+
<!--
|
83 |
+
### Downstream Use
|
84 |
+
|
85 |
+
*List how someone could finetune this model on their own dataset.*
|
86 |
+
-->
|
87 |
+
|
88 |
+
<!--
|
89 |
+
### Out-of-Scope Use
|
90 |
+
|
91 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
92 |
+
-->
|
93 |
+
|
94 |
+
<!--
|
95 |
+
## Bias, Risks and Limitations
|
96 |
+
|
97 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
98 |
+
-->
|
99 |
+
|
100 |
+
<!--
|
101 |
+
### Recommendations
|
102 |
+
|
103 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
104 |
+
-->
|
105 |
+
|
106 |
+
## Training Details
|
107 |
+
|
108 |
+
### Training Set Metrics
|
109 |
+
| Training set | Min | Median | Max |
|
110 |
+
|:-------------|:----|:--------|:----|
|
111 |
+
| Word count | 1 | 12.9119 | 131 |
|
112 |
+
|
113 |
+
### Training Hyperparameters
|
114 |
+
- batch_size: (16, 16)
|
115 |
+
- num_epochs: (2, 2)
|
116 |
+
- max_steps: -1
|
117 |
+
- sampling_strategy: oversampling
|
118 |
+
- num_iterations: 40
|
119 |
+
- body_learning_rate: (2e-05, 2e-05)
|
120 |
+
- head_learning_rate: 2e-05
|
121 |
+
- loss: CosineSimilarityLoss
|
122 |
+
- distance_metric: cosine_distance
|
123 |
+
- margin: 0.25
|
124 |
+
- end_to_end: False
|
125 |
+
- use_amp: False
|
126 |
+
- warmup_proportion: 0.1
|
127 |
+
- l2_weight: 0.01
|
128 |
+
- seed: 42
|
129 |
+
- eval_max_steps: -1
|
130 |
+
- load_best_model_at_end: False
|
131 |
+
|
132 |
+
### Training Results
|
133 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
134 |
+
|:------:|:-----:|:-------------:|:---------------:|
|
135 |
+
| 0.0001 | 1 | 0.1571 | - |
|
136 |
+
| 0.0063 | 50 | 0.1986 | - |
|
137 |
+
| 0.0127 | 100 | 0.1774 | - |
|
138 |
+
| 0.0190 | 150 | 0.136 | - |
|
139 |
+
| 0.0254 | 200 | 0.1061 | - |
|
140 |
+
| 0.0317 | 250 | 0.0779 | - |
|
141 |
+
| 0.0380 | 300 | 0.0671 | - |
|
142 |
+
| 0.0444 | 350 | 0.0482 | - |
|
143 |
+
| 0.0507 | 400 | 0.0444 | - |
|
144 |
+
| 0.0571 | 450 | 0.0427 | - |
|
145 |
+
| 0.0634 | 500 | 0.0323 | - |
|
146 |
+
| 0.0698 | 550 | 0.0274 | - |
|
147 |
+
| 0.0761 | 600 | 0.0301 | - |
|
148 |
+
| 0.0824 | 650 | 0.0259 | - |
|
149 |
+
| 0.0888 | 700 | 0.0274 | - |
|
150 |
+
| 0.0951 | 750 | 0.0305 | - |
|
151 |
+
| 0.1015 | 800 | 0.0221 | - |
|
152 |
+
| 0.1078 | 850 | 0.0185 | - |
|
153 |
+
| 0.1141 | 900 | 0.0208 | - |
|
154 |
+
| 0.1205 | 950 | 0.0198 | - |
|
155 |
+
| 0.1268 | 1000 | 0.0107 | - |
|
156 |
+
| 0.1332 | 1050 | 0.0149 | - |
|
157 |
+
| 0.1395 | 1100 | 0.0162 | - |
|
158 |
+
| 0.1458 | 1150 | 0.0119 | - |
|
159 |
+
| 0.1522 | 1200 | 0.0162 | - |
|
160 |
+
| 0.1585 | 1250 | 0.0133 | - |
|
161 |
+
| 0.1649 | 1300 | 0.0177 | - |
|
162 |
+
| 0.1712 | 1350 | 0.0102 | - |
|
163 |
+
| 0.1776 | 1400 | 0.0224 | - |
|
164 |
+
| 0.1839 | 1450 | 0.0107 | - |
|
165 |
+
| 0.1902 | 1500 | 0.0182 | - |
|
166 |
+
| 0.1966 | 1550 | 0.0137 | - |
|
167 |
+
| 0.2029 | 1600 | 0.0158 | - |
|
168 |
+
| 0.2093 | 1650 | 0.0142 | - |
|
169 |
+
| 0.2156 | 1700 | 0.0117 | - |
|
170 |
+
| 0.2219 | 1750 | 0.0161 | - |
|
171 |
+
| 0.2283 | 1800 | 0.0128 | - |
|
172 |
+
| 0.2346 | 1850 | 0.0118 | - |
|
173 |
+
| 0.2410 | 1900 | 0.0125 | - |
|
174 |
+
| 0.2473 | 1950 | 0.0135 | - |
|
175 |
+
| 0.2536 | 2000 | 0.0123 | - |
|
176 |
+
| 0.2600 | 2050 | 0.0128 | - |
|
177 |
+
| 0.2663 | 2100 | 0.0119 | - |
|
178 |
+
| 0.2727 | 2150 | 0.0074 | - |
|
179 |
+
| 0.2790 | 2200 | 0.0116 | - |
|
180 |
+
| 0.2854 | 2250 | 0.0088 | - |
|
181 |
+
| 0.2917 | 2300 | 0.008 | - |
|
182 |
+
| 0.2980 | 2350 | 0.0137 | - |
|
183 |
+
| 0.3044 | 2400 | 0.0087 | - |
|
184 |
+
| 0.3107 | 2450 | 0.0107 | - |
|
185 |
+
| 0.3171 | 2500 | 0.0118 | - |
|
186 |
+
| 0.3234 | 2550 | 0.0096 | - |
|
187 |
+
| 0.3297 | 2600 | 0.0073 | - |
|
188 |
+
| 0.3361 | 2650 | 0.0125 | - |
|
189 |
+
| 0.3424 | 2700 | 0.0085 | - |
|
190 |
+
| 0.3488 | 2750 | 0.0081 | - |
|
191 |
+
| 0.3551 | 2800 | 0.0097 | - |
|
192 |
+
| 0.3614 | 2850 | 0.0104 | - |
|
193 |
+
| 0.3678 | 2900 | 0.0062 | - |
|
194 |
+
| 0.3741 | 2950 | 0.0124 | - |
|
195 |
+
| 0.3805 | 3000 | 0.0115 | - |
|
196 |
+
| 0.3868 | 3050 | 0.012 | - |
|
197 |
+
| 0.3932 | 3100 | 0.0147 | - |
|
198 |
+
| 0.3995 | 3150 | 0.0097 | - |
|
199 |
+
| 0.4058 | 3200 | 0.0107 | - |
|
200 |
+
| 0.4122 | 3250 | 0.0074 | - |
|
201 |
+
| 0.4185 | 3300 | 0.013 | - |
|
202 |
+
| 0.4249 | 3350 | 0.0115 | - |
|
203 |
+
| 0.4312 | 3400 | 0.008 | - |
|
204 |
+
| 0.4375 | 3450 | 0.0087 | - |
|
205 |
+
| 0.4439 | 3500 | 0.0099 | - |
|
206 |
+
| 0.4502 | 3550 | 0.0076 | - |
|
207 |
+
| 0.4566 | 3600 | 0.0118 | - |
|
208 |
+
| 0.4629 | 3650 | 0.013 | - |
|
209 |
+
| 0.4692 | 3700 | 0.0107 | - |
|
210 |
+
| 0.4756 | 3750 | 0.0123 | - |
|
211 |
+
| 0.4819 | 3800 | 0.0101 | - |
|
212 |
+
| 0.4883 | 3850 | 0.0095 | - |
|
213 |
+
| 0.4946 | 3900 | 0.01 | - |
|
214 |
+
| 0.5010 | 3950 | 0.0068 | - |
|
215 |
+
| 0.5073 | 4000 | 0.0064 | - |
|
216 |
+
| 0.5136 | 4050 | 0.0096 | - |
|
217 |
+
| 0.5200 | 4100 | 0.0063 | - |
|
218 |
+
| 0.5263 | 4150 | 0.0083 | - |
|
219 |
+
| 0.5327 | 4200 | 0.0067 | - |
|
220 |
+
| 0.5390 | 4250 | 0.0095 | - |
|
221 |
+
| 0.5453 | 4300 | 0.0097 | - |
|
222 |
+
| 0.5517 | 4350 | 0.0057 | - |
|
223 |
+
| 0.5580 | 4400 | 0.0101 | - |
|
224 |
+
| 0.5644 | 4450 | 0.0101 | - |
|
225 |
+
| 0.5707 | 4500 | 0.0043 | - |
|
226 |
+
| 0.5770 | 4550 | 0.0099 | - |
|
227 |
+
| 0.5834 | 4600 | 0.0091 | - |
|
228 |
+
| 0.5897 | 4650 | 0.0065 | - |
|
229 |
+
| 0.5961 | 4700 | 0.0071 | - |
|
230 |
+
| 0.6024 | 4750 | 0.0035 | - |
|
231 |
+
| 0.6088 | 4800 | 0.0088 | - |
|
232 |
+
| 0.6151 | 4850 | 0.0079 | - |
|
233 |
+
| 0.6214 | 4900 | 0.0094 | - |
|
234 |
+
| 0.6278 | 4950 | 0.0105 | - |
|
235 |
+
| 0.6341 | 5000 | 0.0091 | - |
|
236 |
+
| 0.6405 | 5050 | 0.0109 | - |
|
237 |
+
| 0.6468 | 5100 | 0.0081 | - |
|
238 |
+
| 0.6531 | 5150 | 0.0087 | - |
|
239 |
+
| 0.6595 | 5200 | 0.0091 | - |
|
240 |
+
| 0.6658 | 5250 | 0.0071 | - |
|
241 |
+
| 0.6722 | 5300 | 0.0072 | - |
|
242 |
+
| 0.6785 | 5350 | 0.0084 | - |
|
243 |
+
| 0.6848 | 5400 | 0.0099 | - |
|
244 |
+
| 0.6912 | 5450 | 0.004 | - |
|
245 |
+
| 0.6975 | 5500 | 0.0038 | - |
|
246 |
+
| 0.7039 | 5550 | 0.0072 | - |
|
247 |
+
| 0.7102 | 5600 | 0.0084 | - |
|
248 |
+
| 0.7166 | 5650 | 0.004 | - |
|
249 |
+
| 0.7229 | 5700 | 0.0077 | - |
|
250 |
+
| 0.7292 | 5750 | 0.0066 | - |
|
251 |
+
| 0.7356 | 5800 | 0.0043 | - |
|
252 |
+
| 0.7419 | 5850 | 0.0054 | - |
|
253 |
+
| 0.7483 | 5900 | 0.0107 | - |
|
254 |
+
| 0.7546 | 5950 | 0.0046 | - |
|
255 |
+
| 0.7609 | 6000 | 0.0075 | - |
|
256 |
+
| 0.7673 | 6050 | 0.0106 | - |
|
257 |
+
| 0.7736 | 6100 | 0.0063 | - |
|
258 |
+
| 0.7800 | 6150 | 0.007 | - |
|
259 |
+
| 0.7863 | 6200 | 0.0066 | - |
|
260 |
+
| 0.7926 | 6250 | 0.0067 | - |
|
261 |
+
| 0.7990 | 6300 | 0.0078 | - |
|
262 |
+
| 0.8053 | 6350 | 0.0093 | - |
|
263 |
+
| 0.8117 | 6400 | 0.0055 | - |
|
264 |
+
| 0.8180 | 6450 | 0.0074 | - |
|
265 |
+
| 0.8244 | 6500 | 0.0115 | - |
|
266 |
+
| 0.8307 | 6550 | 0.0058 | - |
|
267 |
+
| 0.8370 | 6600 | 0.005 | - |
|
268 |
+
| 0.8434 | 6650 | 0.007 | - |
|
269 |
+
| 0.8497 | 6700 | 0.0053 | - |
|
270 |
+
| 0.8561 | 6750 | 0.0086 | - |
|
271 |
+
| 0.8624 | 6800 | 0.0054 | - |
|
272 |
+
| 0.8687 | 6850 | 0.0055 | - |
|
273 |
+
| 0.8751 | 6900 | 0.006 | - |
|
274 |
+
| 0.8814 | 6950 | 0.0068 | - |
|
275 |
+
| 0.8878 | 7000 | 0.0103 | - |
|
276 |
+
| 0.8941 | 7050 | 0.0054 | - |
|
277 |
+
| 0.9004 | 7100 | 0.007 | - |
|
278 |
+
| 0.9068 | 7150 | 0.0047 | - |
|
279 |
+
| 0.9131 | 7200 | 0.0076 | - |
|
280 |
+
| 0.9195 | 7250 | 0.0077 | - |
|
281 |
+
| 0.9258 | 7300 | 0.0058 | - |
|
282 |
+
| 0.9321 | 7350 | 0.0056 | - |
|
283 |
+
| 0.9385 | 7400 | 0.0041 | - |
|
284 |
+
| 0.9448 | 7450 | 0.0062 | - |
|
285 |
+
| 0.9512 | 7500 | 0.0044 | - |
|
286 |
+
| 0.9575 | 7550 | 0.0042 | - |
|
287 |
+
| 0.9639 | 7600 | 0.0095 | - |
|
288 |
+
| 0.9702 | 7650 | 0.0045 | - |
|
289 |
+
| 0.9765 | 7700 | 0.0062 | - |
|
290 |
+
| 0.9829 | 7750 | 0.0036 | - |
|
291 |
+
| 0.9892 | 7800 | 0.0086 | - |
|
292 |
+
| 0.9956 | 7850 | 0.0071 | - |
|
293 |
+
| 1.0019 | 7900 | 0.0103 | - |
|
294 |
+
| 1.0082 | 7950 | 0.004 | - |
|
295 |
+
| 1.0146 | 8000 | 0.0059 | - |
|
296 |
+
| 1.0209 | 8050 | 0.0053 | - |
|
297 |
+
| 1.0273 | 8100 | 0.0079 | - |
|
298 |
+
| 1.0336 | 8150 | 0.0078 | - |
|
299 |
+
| 1.0399 | 8200 | 0.0077 | - |
|
300 |
+
| 1.0463 | 8250 | 0.0062 | - |
|
301 |
+
| 1.0526 | 8300 | 0.005 | - |
|
302 |
+
| 1.0590 | 8350 | 0.0071 | - |
|
303 |
+
| 1.0653 | 8400 | 0.0042 | - |
|
304 |
+
| 1.0717 | 8450 | 0.0054 | - |
|
305 |
+
| 1.0780 | 8500 | 0.0048 | - |
|
306 |
+
| 1.0843 | 8550 | 0.0045 | - |
|
307 |
+
| 1.0907 | 8600 | 0.0062 | - |
|
308 |
+
| 1.0970 | 8650 | 0.0094 | - |
|
309 |
+
| 1.1034 | 8700 | 0.0043 | - |
|
310 |
+
| 1.1097 | 8750 | 0.004 | - |
|
311 |
+
| 1.1160 | 8800 | 0.003 | - |
|
312 |
+
| 1.1224 | 8850 | 0.0026 | - |
|
313 |
+
| 1.1287 | 8900 | 0.0051 | - |
|
314 |
+
| 1.1351 | 8950 | 0.0046 | - |
|
315 |
+
| 1.1414 | 9000 | 0.0046 | - |
|
316 |
+
| 1.1477 | 9050 | 0.0075 | - |
|
317 |
+
| 1.1541 | 9100 | 0.0066 | - |
|
318 |
+
| 1.1604 | 9150 | 0.0078 | - |
|
319 |
+
| 1.1668 | 9200 | 0.0069 | - |
|
320 |
+
| 1.1731 | 9250 | 0.0087 | - |
|
321 |
+
| 1.1795 | 9300 | 0.0047 | - |
|
322 |
+
| 1.1858 | 9350 | 0.0037 | - |
|
323 |
+
| 1.1921 | 9400 | 0.007 | - |
|
324 |
+
| 1.1985 | 9450 | 0.0069 | - |
|
325 |
+
| 1.2048 | 9500 | 0.0061 | - |
|
326 |
+
| 1.2112 | 9550 | 0.0047 | - |
|
327 |
+
| 1.2175 | 9600 | 0.0065 | - |
|
328 |
+
| 1.2238 | 9650 | 0.0058 | - |
|
329 |
+
| 1.2302 | 9700 | 0.0061 | - |
|
330 |
+
| 1.2365 | 9750 | 0.0055 | - |
|
331 |
+
| 1.2429 | 9800 | 0.0064 | - |
|
332 |
+
| 1.2492 | 9850 | 0.0041 | - |
|
333 |
+
| 1.2555 | 9900 | 0.0086 | - |
|
334 |
+
| 1.2619 | 9950 | 0.0053 | - |
|
335 |
+
| 1.2682 | 10000 | 0.0047 | - |
|
336 |
+
| 1.2746 | 10050 | 0.0053 | - |
|
337 |
+
| 1.2809 | 10100 | 0.003 | - |
|
338 |
+
| 1.2873 | 10150 | 0.0046 | - |
|
339 |
+
| 1.2936 | 10200 | 0.0052 | - |
|
340 |
+
| 1.2999 | 10250 | 0.0056 | - |
|
341 |
+
| 1.3063 | 10300 | 0.0052 | - |
|
342 |
+
| 1.3126 | 10350 | 0.0079 | - |
|
343 |
+
| 1.3190 | 10400 | 0.006 | - |
|
344 |
+
| 1.3253 | 10450 | 0.0055 | - |
|
345 |
+
| 1.3316 | 10500 | 0.0066 | - |
|
346 |
+
| 1.3380 | 10550 | 0.0076 | - |
|
347 |
+
| 1.3443 | 10600 | 0.0037 | - |
|
348 |
+
| 1.3507 | 10650 | 0.0066 | - |
|
349 |
+
| 1.3570 | 10700 | 0.0059 | - |
|
350 |
+
| 1.3633 | 10750 | 0.0057 | - |
|
351 |
+
| 1.3697 | 10800 | 0.0038 | - |
|
352 |
+
| 1.3760 | 10850 | 0.0044 | - |
|
353 |
+
| 1.3824 | 10900 | 0.0059 | - |
|
354 |
+
| 1.3887 | 10950 | 0.0073 | - |
|
355 |
+
| 1.3951 | 11000 | 0.0055 | - |
|
356 |
+
| 1.4014 | 11050 | 0.0039 | - |
|
357 |
+
| 1.4077 | 11100 | 0.0054 | - |
|
358 |
+
| 1.4141 | 11150 | 0.0068 | - |
|
359 |
+
| 1.4204 | 11200 | 0.0067 | - |
|
360 |
+
| 1.4268 | 11250 | 0.0041 | - |
|
361 |
+
| 1.4331 | 11300 | 0.0076 | - |
|
362 |
+
| 1.4394 | 11350 | 0.0071 | - |
|
363 |
+
| 1.4458 | 11400 | 0.0044 | - |
|
364 |
+
| 1.4521 | 11450 | 0.0061 | - |
|
365 |
+
| 1.4585 | 11500 | 0.0039 | - |
|
366 |
+
| 1.4648 | 11550 | 0.006 | - |
|
367 |
+
| 1.4711 | 11600 | 0.0045 | - |
|
368 |
+
| 1.4775 | 11650 | 0.0044 | - |
|
369 |
+
| 1.4838 | 11700 | 0.0063 | - |
|
370 |
+
| 1.4902 | 11750 | 0.0061 | - |
|
371 |
+
| 1.4965 | 11800 | 0.0058 | - |
|
372 |
+
| 1.5029 | 11850 | 0.0039 | - |
|
373 |
+
| 1.5092 | 11900 | 0.0041 | - |
|
374 |
+
| 1.5155 | 11950 | 0.0052 | - |
|
375 |
+
| 1.5219 | 12000 | 0.0034 | - |
|
376 |
+
| 1.5282 | 12050 | 0.0078 | - |
|
377 |
+
| 1.5346 | 12100 | 0.0049 | - |
|
378 |
+
| 1.5409 | 12150 | 0.0064 | - |
|
379 |
+
| 1.5472 | 12200 | 0.0063 | - |
|
380 |
+
| 1.5536 | 12250 | 0.0068 | - |
|
381 |
+
| 1.5599 | 12300 | 0.008 | - |
|
382 |
+
| 1.5663 | 12350 | 0.0043 | - |
|
383 |
+
| 1.5726 | 12400 | 0.0057 | - |
|
384 |
+
| 1.5789 | 12450 | 0.0044 | - |
|
385 |
+
| 1.5853 | 12500 | 0.0048 | - |
|
386 |
+
| 1.5916 | 12550 | 0.0049 | - |
|
387 |
+
| 1.5980 | 12600 | 0.0052 | - |
|
388 |
+
| 1.6043 | 12650 | 0.0061 | - |
|
389 |
+
| 1.6107 | 12700 | 0.0066 | - |
|
390 |
+
| 1.6170 | 12750 | 0.0079 | - |
|
391 |
+
| 1.6233 | 12800 | 0.0047 | - |
|
392 |
+
| 1.6297 | 12850 | 0.005 | - |
|
393 |
+
| 1.6360 | 12900 | 0.0034 | - |
|
394 |
+
| 1.6424 | 12950 | 0.0051 | - |
|
395 |
+
| 1.6487 | 13000 | 0.006 | - |
|
396 |
+
| 1.6550 | 13050 | 0.0046 | - |
|
397 |
+
| 1.6614 | 13100 | 0.003 | - |
|
398 |
+
| 1.6677 | 13150 | 0.0055 | - |
|
399 |
+
| 1.6741 | 13200 | 0.0069 | - |
|
400 |
+
| 1.6804 | 13250 | 0.0033 | - |
|
401 |
+
| 1.6867 | 13300 | 0.0095 | - |
|
402 |
+
| 1.6931 | 13350 | 0.0043 | - |
|
403 |
+
| 1.6994 | 13400 | 0.0055 | - |
|
404 |
+
| 1.7058 | 13450 | 0.0081 | - |
|
405 |
+
| 1.7121 | 13500 | 0.0042 | - |
|
406 |
+
| 1.7185 | 13550 | 0.0081 | - |
|
407 |
+
| 1.7248 | 13600 | 0.0055 | - |
|
408 |
+
| 1.7311 | 13650 | 0.0043 | - |
|
409 |
+
| 1.7375 | 13700 | 0.0033 | - |
|
410 |
+
| 1.7438 | 13750 | 0.0044 | - |
|
411 |
+
| 1.7502 | 13800 | 0.0062 | - |
|
412 |
+
| 1.7565 | 13850 | 0.0032 | - |
|
413 |
+
| 1.7628 | 13900 | 0.0043 | - |
|
414 |
+
| 1.7692 | 13950 | 0.0079 | - |
|
415 |
+
| 1.7755 | 14000 | 0.0053 | - |
|
416 |
+
| 1.7819 | 14050 | 0.0044 | - |
|
417 |
+
| 1.7882 | 14100 | 0.0064 | - |
|
418 |
+
| 1.7945 | 14150 | 0.0051 | - |
|
419 |
+
| 1.8009 | 14200 | 0.0088 | - |
|
420 |
+
| 1.8072 | 14250 | 0.0048 | - |
|
421 |
+
| 1.8136 | 14300 | 0.0044 | - |
|
422 |
+
| 1.8199 | 14350 | 0.0071 | - |
|
423 |
+
| 1.8263 | 14400 | 0.0058 | - |
|
424 |
+
| 1.8326 | 14450 | 0.007 | - |
|
425 |
+
| 1.8389 | 14500 | 0.0028 | - |
|
426 |
+
| 1.8453 | 14550 | 0.0046 | - |
|
427 |
+
| 1.8516 | 14600 | 0.0061 | - |
|
428 |
+
| 1.8580 | 14650 | 0.0054 | - |
|
429 |
+
| 1.8643 | 14700 | 0.004 | - |
|
430 |
+
| 1.8706 | 14750 | 0.0034 | - |
|
431 |
+
| 1.8770 | 14800 | 0.0044 | - |
|
432 |
+
| 1.8833 | 14850 | 0.0033 | - |
|
433 |
+
| 1.8897 | 14900 | 0.007 | - |
|
434 |
+
| 1.8960 | 14950 | 0.0044 | - |
|
435 |
+
| 1.9023 | 15000 | 0.0045 | - |
|
436 |
+
| 1.9087 | 15050 | 0.0045 | - |
|
437 |
+
| 1.9150 | 15100 | 0.0093 | - |
|
438 |
+
| 1.9214 | 15150 | 0.0036 | - |
|
439 |
+
| 1.9277 | 15200 | 0.0055 | - |
|
440 |
+
| 1.9341 | 15250 | 0.0037 | - |
|
441 |
+
| 1.9404 | 15300 | 0.0043 | - |
|
442 |
+
| 1.9467 | 15350 | 0.0034 | - |
|
443 |
+
| 1.9531 | 15400 | 0.0068 | - |
|
444 |
+
| 1.9594 | 15450 | 0.0058 | - |
|
445 |
+
| 1.9658 | 15500 | 0.0069 | - |
|
446 |
+
| 1.9721 | 15550 | 0.0081 | - |
|
447 |
+
| 1.9784 | 15600 | 0.0061 | - |
|
448 |
+
| 1.9848 | 15650 | 0.0039 | - |
|
449 |
+
| 1.9911 | 15700 | 0.0065 | - |
|
450 |
+
| 1.9975 | 15750 | 0.0048 | - |
|
451 |
+
|
452 |
+
### Framework Versions
|
453 |
+
- Python: 3.12.3
|
454 |
+
- SetFit: 1.1.0
|
455 |
+
- Sentence Transformers: 3.2.0
|
456 |
+
- Transformers: 4.45.2
|
457 |
+
- PyTorch: 2.5.0+cu121
|
458 |
+
- Datasets: 3.0.1
|
459 |
+
- Tokenizers: 0.20.1
|
460 |
+
|
461 |
+
## Citation
|
462 |
+
|
463 |
+
### BibTeX
|
464 |
+
```bibtex
|
465 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
466 |
+
doi = {10.48550/ARXIV.2209.11055},
|
467 |
+
url = {https://arxiv.org/abs/2209.11055},
|
468 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
469 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
470 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
471 |
+
publisher = {arXiv},
|
472 |
+
year = {2022},
|
473 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
474 |
+
}
|
475 |
+
```
|
476 |
+
|
477 |
+
<!--
|
478 |
+
## Glossary
|
479 |
+
|
480 |
+
*Clearly define terms in order to be accessible across audiences.*
|
481 |
+
-->
|
482 |
+
|
483 |
+
<!--
|
484 |
+
## Model Card Authors
|
485 |
+
|
486 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
487 |
+
-->
|
488 |
+
|
489 |
+
<!--
|
490 |
+
## Model Card Contact
|
491 |
+
|
492 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
493 |
-->
|