File size: 9,091 Bytes
c483ec7
 
 
 
 
 
 
a8711ff
 
c483ec7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a62485e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c483ec7
 
a62485e
 
 
c483ec7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a62485e
 
 
 
 
c483ec7
a62485e
 
c483ec7
a62485e
 
 
 
 
 
a8711ff
a62485e
a8711ff
a62485e
 
 
a8711ff
a62485e
 
a8711ff
a62485e
a8711ff
a62485e
 
 
 
c483ec7
a62485e
 
 
c483ec7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import torch
import torch.nn as nn
import torch.optim as optim
import chess
import os
import chess.engine as eng
import torch.multiprocessing as mp
import random
from pathlib import Path

# CONFIGURATION
CONFIG = {
    "stockfish_path": "/Users/aaronvattay/Downloads/stockfish/stockfish-macos-m1-apple-silicon",
    "model_path": "chessy_model.pth",
    "backup_model_path": "chessy_modelt-1.pth",
    "device": torch.device("mps"),
    "learning_rate": 1e-4,
    "num_games": 30,
    "num_epochs": 10,
    "stockfish_time_limit": 1.0,
    "search_depth": 1,
    "epsilon": 4
}

device = CONFIG["device"]

def board_to_tensor(board):
    piece_encoding = {
        'P': 1, 'N': 2, 'B': 3, 'R': 4, 'Q': 5, 'K': 6,
        'p': 7, 'n': 8, 'b': 9, 'r': 10, 'q': 11, 'k': 12
    }

    tensor = torch.zeros(64, dtype=torch.long)
    for square in chess.SQUARES:
        piece = board.piece_at(square)
        if piece:
            tensor[square] = piece_encoding[piece.symbol()]
        else:
            tensor[square] = 0

    return tensor.unsqueeze(0)

class NN1(nn.Module):
    def __init__(self):
        super().__init__()
        self.embedding = nn.Embedding(13, 64)
        self.attention = nn.MultiheadAttention(embed_dim=64, num_heads=16)
        self.neu = 512
        self.neurons = nn.Sequential(
            nn.Linear(4096, self.neu),
            nn.ReLU(),
            nn.Linear(self.neu, self.neu), 
            nn.ReLU(),
            nn.Linear(self.neu, self.neu), 
            nn.ReLU(),
            nn.Linear(self.neu, self.neu), 
            nn.ReLU(),
            nn.Linear(self.neu, self.neu), 
            nn.ReLU(),
            nn.Linear(self.neu, self.neu), 
            nn.ReLU(),
            nn.Linear(self.neu, self.neu), 
            nn.ReLU(),
            nn.Linear(self.neu, self.neu), 
            nn.ReLU(),
            nn.Linear(self.neu, self.neu), 
            nn.ReLU(),
            nn.Linear(self.neu, self.neu), 
            nn.ReLU(),
            nn.Linear(self.neu, self.neu), 
            nn.ReLU(),
            nn.Linear(self.neu, self.neu), 
            nn.ReLU(),
            nn.Linear(self.neu, self.neu), 
            nn.ReLU(),
            nn.Linear(self.neu, 64), 
            nn.ReLU(),
            nn.Linear(64, 4)
        )

    def forward(self, x):
        x = self.embedding(x)
        x = x.permute(1, 0, 2)
        attn_output, _ = self.attention(x, x, x)
        x = attn_output.permute(1, 0, 2).contiguous()
        x = x.view(x.size(0), -1)
        x = self.neurons(x)
        return x

lass Policy(nn.Module):
  def __init__(self):
    super().__init__()
    self.embedding = nn.Embedding(13, 32)
    self.attention = nn.MultiheadAttention(embed_dim=32, num_heads=16)
    self.neu = 256
    self.neurons = nn.Sequential(
            nn.Linear(64*32, self.neu),
            nn.ReLU(),
            nn.Linear(self.neu, self.neu),
            nn.ReLU(),
            nn.Linear(self.neu, self.neu),
            nn.ReLU(),
            nn.Linear(self.neu, self.neu),
            nn.ReLU(),
            nn.Linear(self.neu, 128),
            nn.ReLU(),
            nn.Linear(128,  29275),
        )

  def forward(self, x):
        x = chess.Board(x)
        color = x.turn
        x = board_to_tensor(x)
        x = self.embedding(x)
        x = x.permute(1, 0, 2)
        attn_output, _ = self.attention(x, x, x)
        x = attn_output.permute(1, 0, 2).contiguous()
        x = x.view(x.size(0), -1)
        x = self.neurons(x) * color
        return x

model = NN1().to(device)
optimizer = optim.Adam(model.parameters(), lr=CONFIG["learning_rate"])
policy = Policy().to(device)
polweight = torch.load("NeoChess/chessy_policy.pth",map_location=device,weights_only=False)
policy.load_state_dict(polweight)

try:
    model.load_state_dict(torch.load(CONFIG["model_path"], map_location=device))
    print(f"Loaded model from {CONFIG['model_path']}")
except FileNotFoundError:
    try:
        model.load_state_dict(torch.load(CONFIG["backup_model_path"], map_location=device))
        print(f"Loaded backup model from {CONFIG['backup_model_path']}")
    except FileNotFoundError:
        print("No model file found, starting from scratch.")

model.train()
criterion = nn.MSELoss()
engine = eng.SimpleEngine.popen_uci(CONFIG["stockfish_path"])
lim = eng.Limit(time=CONFIG["stockfish_time_limit"])

def get_evaluation(board):
    """
    Returns the evaluation of the board from the perspective of the current player.
    The model's output is from White's perspective.
    """
    tensor = board_to_tensor(board).to(device)
    with torch.no_grad():
        evaluation = model(tensor)[0][0].item()
    
    if board.turn == chess.WHITE:
        return evaluation
    else:
        return -evaluation

with open("/usr/local/python/3.12.1/lib/python3.12/site-packages/torchrl/envs/custom/san_moves.txt", "r") as f:
    uci_to_index = {line.strip(): i for i, line in enumerate(f)}


def search(board ,depth ,policy_net=policy, simulations=100, temperature=1.0, device="cpu"):
    """
    Monte Carlo search using policy network for move selection
    and value network via get_evaluation().
    """
    # Convert board FEN to tensor for policy_net
    depth
    with torch.no_grad():
        fen_tensor = torch.tensor([board.fen()], device=device)  # Adjust if your FEN encoding differs
        logits = policy_net(fen_tensor)["logits"].squeeze(0)
        probs = torch.softmax(logits / temperature, dim=-1).cpu().numpy()

    move_scores = {move: 0 for move in board.legal_moves}

    for move in board.legal_moves:
        total_eval = 0
        for _ in range(simulations):
            board.push(move)
            eval_score = get_evaluation(board)  # Uses value net
            total_eval += eval_score
            board.pop()
        move_scores[move] = total_eval / simulations

    # Weight evaluations by policy prior
    for move in move_scores:
        move_index = uci_to_index[str(move)]
        move_scores[move] *= probs[move_index]

    # Pick best move
    best_move = max(move_scores, key=move_scores.get)
    return best_move, move_scores

    

def game_gen(engine_side):
    data = []
    mc = 0
    board = chess.Board()
    while not board.is_game_over():
        is_bot_turn = board.turn != engine_side
        
        if is_bot_turn:
            evaling = {}
            for move in board.legal_moves:
                board.push(move)
                evaling[move] = -search(board, depth=CONFIG["search_depth"], alpha=float('-inf'), beta=float('inf'))
                board.pop()
            
            if not evaling:
                break
            
            keys = list(evaling.keys())
            logits = torch.tensor(list(evaling.values())).to(device)
            probs = torch.softmax(logits,dim=0)
            epsilon = min(CONFIG["epsilon"],len(keys))
            bests = torch.multinomial(probs,num_samples=epsilon,replacement=False)
            best_idx = bests[torch.argmax(logits[bests])]
            move = keys[best_idx.item()]
            
        else:
            result = engine.play(board, lim)
            move = result.move

        if is_bot_turn:
            data.append({
                'fen': board.fen(),
                'move_number': mc,
            })

        board.push(move)
        mc += 1

    result = board.result()
    c = 0
    if result == '1-0':
        c = 10.0
    elif result == '0-1':
        c = -10.0
    return data, c, mc
def train(data, c, mc):
    for entry in data:
            tensor = board_to_tensor(chess.Board(entry['fen'])).to(device)
            target = torch.tensor(c * entry['move_number'] / mc, dtype=torch.float32).to(device)
            output = model(tensor)[0][0]
            loss = criterion(output, target)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        
    print(f"Saving model to {CONFIG['model_path']}")
    torch.save(model.state_dict(), CONFIG["model_path"])
    return
def main():
    for i in range(CONFIG["num_epochs"]):
     mp.set_start_method('spawn', force=True)
     num_games = CONFIG['num_games']
     num_instances = mp.cpu_count()
     print(f"Saving backup model to {CONFIG['backup_model_path']}")
     torch.save(model.state_dict(), CONFIG["backup_model_path"])
     with mp.Pool(processes=num_instances) as pool:
        results_self = pool.starmap(game_gen, [(None,) for _ in range(num_games // 3)])
        results_white = pool.starmap(game_gen, [(chess.WHITE,) for _ in range(num_games // 3)])
        results_black = pool.starmap(game_gen, [(chess.BLACK,) for _ in range(num_games // 3)])
        results = []
        for s, w, b in zip(results_self, results_white, results_black):
         results.extend([s, w, b])
        for batch in results:
            data, c, mc = batch
            print(f"Saving backup model to {CONFIG['backup_model_path']}")
            torch.save(model.state_dict(), CONFIG["backup_model_path"])
            if data:
                train(data, c, mc)
    print("Training complete.")
    engine.quit()
if __name__ == "__main__":
 main()