Create selfchess-colab.py
Browse files- selfchess-colab.py +224 -0
selfchess-colab.py
ADDED
|
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.system('pip install chess')
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.optim as optim
|
| 6 |
+
import chess
|
| 7 |
+
import os
|
| 8 |
+
import chess.engine as eng
|
| 9 |
+
import torch.multiprocessing as mp
|
| 10 |
+
|
| 11 |
+
# CONFIGURATION
|
| 12 |
+
CONFIG = {
|
| 13 |
+
"stockfish_path": "/usr/games/stockfish",
|
| 14 |
+
"model_path": "NeoChess/chessy_model.pth",
|
| 15 |
+
"backup_model_path": "NeoChess/chessy_modelt-1.pth",
|
| 16 |
+
"device": torch.device("cuda"),
|
| 17 |
+
"learning_rate": 1e-4,
|
| 18 |
+
"num_games": 30,
|
| 19 |
+
"num_epochs": 10,
|
| 20 |
+
"stockfish_time_limit": 1.0,
|
| 21 |
+
"search_depth": 1,
|
| 22 |
+
"epsilon": 4
|
| 23 |
+
}
|
| 24 |
+
|
| 25 |
+
device = CONFIG["device"]
|
| 26 |
+
|
| 27 |
+
def board_to_tensor(board):
|
| 28 |
+
piece_encoding = {
|
| 29 |
+
'P': 1, 'N': 2, 'B': 3, 'R': 4, 'Q': 5, 'K': 6,
|
| 30 |
+
'p': 7, 'n': 8, 'b': 9, 'r': 10, 'q': 11, 'k': 12
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
tensor = torch.zeros(64, dtype=torch.long)
|
| 34 |
+
for square in chess.SQUARES:
|
| 35 |
+
piece = board.piece_at(square)
|
| 36 |
+
if piece:
|
| 37 |
+
tensor[square] = piece_encoding[piece.symbol()]
|
| 38 |
+
else:
|
| 39 |
+
tensor[square] = 0
|
| 40 |
+
|
| 41 |
+
return tensor.unsqueeze(0)
|
| 42 |
+
|
| 43 |
+
class NN1(nn.Module):
|
| 44 |
+
def __init__(self):
|
| 45 |
+
super().__init__()
|
| 46 |
+
self.embedding = nn.Embedding(13, 64)
|
| 47 |
+
self.attention = nn.MultiheadAttention(embed_dim=64, num_heads=16)
|
| 48 |
+
self.neu = 512
|
| 49 |
+
self.neurons = nn.Sequential(
|
| 50 |
+
nn.Linear(4096, self.neu),
|
| 51 |
+
nn.ReLU(),
|
| 52 |
+
nn.Linear(self.neu, self.neu),
|
| 53 |
+
nn.ReLU(),
|
| 54 |
+
nn.Linear(self.neu, self.neu),
|
| 55 |
+
nn.ReLU(),
|
| 56 |
+
nn.Linear(self.neu, self.neu),
|
| 57 |
+
nn.ReLU(),
|
| 58 |
+
nn.Linear(self.neu, self.neu),
|
| 59 |
+
nn.ReLU(),
|
| 60 |
+
nn.Linear(self.neu, self.neu),
|
| 61 |
+
nn.ReLU(),
|
| 62 |
+
nn.Linear(self.neu, self.neu),
|
| 63 |
+
nn.ReLU(),
|
| 64 |
+
nn.Linear(self.neu, self.neu),
|
| 65 |
+
nn.ReLU(),
|
| 66 |
+
nn.Linear(self.neu, self.neu),
|
| 67 |
+
nn.ReLU(),
|
| 68 |
+
nn.Linear(self.neu, self.neu),
|
| 69 |
+
nn.ReLU(),
|
| 70 |
+
nn.Linear(self.neu, self.neu),
|
| 71 |
+
nn.ReLU(),
|
| 72 |
+
nn.Linear(self.neu, self.neu),
|
| 73 |
+
nn.ReLU(),
|
| 74 |
+
nn.Linear(self.neu, self.neu),
|
| 75 |
+
nn.ReLU(),
|
| 76 |
+
nn.Linear(self.neu, 64),
|
| 77 |
+
nn.ReLU(),
|
| 78 |
+
nn.Linear(64, 4)
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
def forward(self, x):
|
| 82 |
+
x = self.embedding(x)
|
| 83 |
+
x = x.permute(1, 0, 2)
|
| 84 |
+
attn_output, _ = self.attention(x, x, x)
|
| 85 |
+
x = attn_output.permute(1, 0, 2).contiguous()
|
| 86 |
+
x = x.view(x.size(0), -1)
|
| 87 |
+
x = self.neurons(x)
|
| 88 |
+
return x
|
| 89 |
+
|
| 90 |
+
model = NN1().to(device)
|
| 91 |
+
optimizer = optim.Adam(model.parameters(), lr=CONFIG["learning_rate"])
|
| 92 |
+
|
| 93 |
+
try:
|
| 94 |
+
model.load_state_dict(torch.load(CONFIG["model_path"], map_location=device))
|
| 95 |
+
print(f"Loaded model from {CONFIG['model_path']}")
|
| 96 |
+
except FileNotFoundError:
|
| 97 |
+
try:
|
| 98 |
+
model.load_state_dict(torch.load(CONFIG["backup_model_path"], map_location=device))
|
| 99 |
+
print(f"Loaded backup model from {CONFIG['backup_model_path']}")
|
| 100 |
+
except FileNotFoundError:
|
| 101 |
+
print("No model file found, starting from scratch.")
|
| 102 |
+
|
| 103 |
+
model.train()
|
| 104 |
+
criterion = nn.MSELoss()
|
| 105 |
+
engine = eng.SimpleEngine.popen_uci(CONFIG["stockfish_path"])
|
| 106 |
+
lim = eng.Limit(time=CONFIG["stockfish_time_limit"])
|
| 107 |
+
|
| 108 |
+
def get_evaluation(board):
|
| 109 |
+
"""
|
| 110 |
+
Returns the evaluation of the board from the perspective of the current player.
|
| 111 |
+
The model's output is from White's perspective.
|
| 112 |
+
"""
|
| 113 |
+
tensor = board_to_tensor(board).to(device)
|
| 114 |
+
with torch.no_grad():
|
| 115 |
+
evaluation = model(tensor)[0][0].item()
|
| 116 |
+
|
| 117 |
+
if board.turn == chess.WHITE:
|
| 118 |
+
return evaluation
|
| 119 |
+
else:
|
| 120 |
+
return -evaluation
|
| 121 |
+
|
| 122 |
+
def search(board, depth, alpha, beta):
|
| 123 |
+
"""
|
| 124 |
+
A negamax search function.
|
| 125 |
+
"""
|
| 126 |
+
if depth == 0 or board.is_game_over():
|
| 127 |
+
return get_evaluation(board)
|
| 128 |
+
|
| 129 |
+
max_eval = float('-inf')
|
| 130 |
+
for move in board.legal_moves:
|
| 131 |
+
board.push(move)
|
| 132 |
+
eval = -search(board, depth - 1, -beta, -alpha)
|
| 133 |
+
board.pop()
|
| 134 |
+
max_eval = max(max_eval, eval)
|
| 135 |
+
alpha = max(alpha, eval)
|
| 136 |
+
if alpha >= beta:
|
| 137 |
+
break
|
| 138 |
+
return max_eval
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def game_gen(engine_side):
|
| 144 |
+
data = []
|
| 145 |
+
mc = 0
|
| 146 |
+
board = chess.Board()
|
| 147 |
+
while not board.is_game_over():
|
| 148 |
+
is_bot_turn = board.turn != engine_side
|
| 149 |
+
|
| 150 |
+
if is_bot_turn:
|
| 151 |
+
evaling = {}
|
| 152 |
+
for move in board.legal_moves:
|
| 153 |
+
board.push(move)
|
| 154 |
+
evaling[move] = -search(board, depth=CONFIG["search_depth"], alpha=float('-inf'), beta=float('inf'))
|
| 155 |
+
board.pop()
|
| 156 |
+
|
| 157 |
+
if not evaling:
|
| 158 |
+
break
|
| 159 |
+
|
| 160 |
+
keys = list(evaling.keys())
|
| 161 |
+
logits = torch.tensor(list(evaling.values())).to(device)
|
| 162 |
+
probs = torch.softmax(logits,dim=0)
|
| 163 |
+
epsilon = min(CONFIG["epsilon"],len(keys))
|
| 164 |
+
bests = torch.multinomial(probs,num_samples=epsilon,replacement=False)
|
| 165 |
+
best_idx = bests[torch.argmax(logits[bests])]
|
| 166 |
+
move = keys[best_idx.item()]
|
| 167 |
+
|
| 168 |
+
else:
|
| 169 |
+
result = engine.play(board, lim)
|
| 170 |
+
move = result.move
|
| 171 |
+
|
| 172 |
+
if is_bot_turn:
|
| 173 |
+
data.append({
|
| 174 |
+
'fen': board.fen(),
|
| 175 |
+
'move_number': mc,
|
| 176 |
+
})
|
| 177 |
+
|
| 178 |
+
board.push(move)
|
| 179 |
+
mc += 1
|
| 180 |
+
|
| 181 |
+
result = board.result()
|
| 182 |
+
c = 0
|
| 183 |
+
if result == '1-0':
|
| 184 |
+
c = 10.0
|
| 185 |
+
elif result == '0-1':
|
| 186 |
+
c = -10.0
|
| 187 |
+
return data, c, mc
|
| 188 |
+
def train(data, c, mc):
|
| 189 |
+
for entry in data:
|
| 190 |
+
tensor = board_to_tensor(chess.Board(entry['fen'])).to(device)
|
| 191 |
+
target = torch.tensor(c * entry['move_number'] / mc, dtype=torch.float32).to(device)
|
| 192 |
+
output = model(tensor)[0][0]
|
| 193 |
+
loss = criterion(output, target)
|
| 194 |
+
optimizer.zero_grad()
|
| 195 |
+
loss.backward()
|
| 196 |
+
optimizer.step()
|
| 197 |
+
|
| 198 |
+
print(f"Saving model to {CONFIG['model_path']}")
|
| 199 |
+
torch.save(model.state_dict(), CONFIG["model_path"])
|
| 200 |
+
return
|
| 201 |
+
def main():
|
| 202 |
+
for i in range(CONFIG["num_epochs"]):
|
| 203 |
+
mp.set_start_method('spawn', force=True)
|
| 204 |
+
num_games = CONFIG['num_games']
|
| 205 |
+
num_instances = mp.cpu_count()
|
| 206 |
+
print(f"Saving backup model to {CONFIG['backup_model_path']}")
|
| 207 |
+
torch.save(model.state_dict(), CONFIG["backup_model_path"])
|
| 208 |
+
with mp.Pool(processes=num_instances) as pool:
|
| 209 |
+
results_self = pool.starmap(game_gen, [(None,) for _ in range(num_games // 3)])
|
| 210 |
+
results_white = pool.starmap(game_gen, [(chess.WHITE,) for _ in range(num_games // 3)])
|
| 211 |
+
results_black = pool.starmap(game_gen, [(chess.BLACK,) for _ in range(num_games // 3)])
|
| 212 |
+
results = []
|
| 213 |
+
for s, w, b in zip(results_self, results_white, results_black):
|
| 214 |
+
results.extend([s, w, b])
|
| 215 |
+
for batch in results:
|
| 216 |
+
data, c, mc = batch
|
| 217 |
+
print(f"Saving backup model to {CONFIG['backup_model_path']}")
|
| 218 |
+
torch.save(model.state_dict(), CONFIG["backup_model_path"])
|
| 219 |
+
if data:
|
| 220 |
+
train(data, c, mc)
|
| 221 |
+
print("Training complete.")
|
| 222 |
+
engine.quit()
|
| 223 |
+
if __name__ == "__main__":
|
| 224 |
+
main()
|