Blip-2-test-4 / handler.py
ChirathD's picture
Update handler.py
9467c14
raw
history blame
2.91 kB
# +
from typing import Dict, List, Any
from PIL import Image
import torch
import os
import io
import base64
from io import BytesIO
# from transformers import BlipForConditionalGeneration, BlipProcessor
# from transformers import Blip2Processor, Blip2ForConditionalGeneration
from transformers import Blip2ForConditionalGeneration, AutoProcessor
from peft import PeftModel, PeftConfig
# -
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class EndpointHandler():
def __init__(self, path=""):
# load the optimized model
print("####### Start Deploying #####")
# self.processor = Blip2Processor.from_pretrained("ChirathD/Blip-2-test-1")
# self.model = Blip2ForConditionalGeneration.from_pretrained("ChirathD/Blip-2-test-1")
# self.model.eval()
# self.model = self.model.to(device)
peft_model_id = "ChirathD/Blip-2-test-4"
config = PeftConfig.from_pretrained(peft_model_id)
self.model = Blip2ForConditionalGeneration.from_pretrained(config.base_model_name_or_path, load_in_8bit=True, device_map="auto")
self.model = PeftModel.from_pretrained(self.model, peft_model_id)
self.processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
def __call__(self, data: Any) -> Dict[str, Any]:
"""
Args:
data (:obj:):
includes the input data and the parameters for the inference.
Return:
A :obj:`dict`:. The object returned should be a dict of one list like {"captions": ["A hugging face at the office"]} containing :
- "caption": A string corresponding to the generated caption.
"""
print(data)
inputs = data.pop("inputs", data)
parameters = data.pop("parameters", {})
print(input)
image_bytes = base64.b64decode(inputs)
image_io = io.BytesIO(image_bytes)
image = Image.open(image_io)
inputs = self.processor(images=image, return_tensors="pt")
pixel_values = inputs.pixel_values
generated_ids = self.model.generate(pixel_values=pixel_values, max_length=25)
generated_caption = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(generated_caption)
# raw_images = [Image.open(BytesIO(_img)) for _img in inputs]
# processed_image = self.processor(images=raw_images, return_tensors="pt")
# processed_image["pixel_values"] = processed_image["pixel_values"].to(device)
# processed_image = {**processed_image, **parameters}
# with torch.no_grad():
# out = self.model.generate(
# **processed_image
# )
# captions = self.processor.batch_decode(out, skip_special_tokens=True)
return {"captions": generated_caption}