Create handler.py
Browse files- handler.py +64 -0
handler.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# +
|
2 |
+
from typing import Dict, List, Any
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
import os
|
6 |
+
import io
|
7 |
+
import base64
|
8 |
+
from io import BytesIO
|
9 |
+
# from transformers import BlipForConditionalGeneration, BlipProcessor
|
10 |
+
from transformers import Blip2Processor, Blip2ForConditionalGeneration
|
11 |
+
|
12 |
+
|
13 |
+
# -
|
14 |
+
|
15 |
+
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
16 |
+
|
17 |
+
class EndpointHandler():
|
18 |
+
def __init__(self, path=""):
|
19 |
+
# load the optimized model
|
20 |
+
print("####### Start Deploying #####")
|
21 |
+
self.processor = Blip2Processor.from_pretrained("ChirathD/Blip-2-test-1")
|
22 |
+
self.model = Blip2ForConditionalGeneration.from_pretrained("ChirathD/Blip-2-test-1")
|
23 |
+
# self.model.eval()
|
24 |
+
# self.model = self.model.to(device)
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
def __call__(self, data: Any) -> Dict[str, Any]:
|
29 |
+
"""
|
30 |
+
Args:
|
31 |
+
data (:obj:):
|
32 |
+
includes the input data and the parameters for the inference.
|
33 |
+
Return:
|
34 |
+
A :obj:`dict`:. The object returned should be a dict of one list like {"captions": ["A hugging face at the office"]} containing :
|
35 |
+
- "caption": A string corresponding to the generated caption.
|
36 |
+
"""
|
37 |
+
print(data)
|
38 |
+
inputs = data.pop("inputs", data)
|
39 |
+
parameters = data.pop("parameters", {})
|
40 |
+
print(input)
|
41 |
+
image_bytes = base64.b64decode(inputs)
|
42 |
+
image_io = io.BytesIO(image_bytes)
|
43 |
+
image = Image.open(image_io)
|
44 |
+
|
45 |
+
inputs = self.processor(images=image, return_tensors="pt")
|
46 |
+
pixel_values = inputs.pixel_values
|
47 |
+
|
48 |
+
generated_ids = self.model.generate(pixel_values=pixel_values, max_length=25)
|
49 |
+
generated_caption = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
50 |
+
print(generated_caption)
|
51 |
+
|
52 |
+
# raw_images = [Image.open(BytesIO(_img)) for _img in inputs]
|
53 |
+
|
54 |
+
# processed_image = self.processor(images=raw_images, return_tensors="pt")
|
55 |
+
# processed_image["pixel_values"] = processed_image["pixel_values"].to(device)
|
56 |
+
# processed_image = {**processed_image, **parameters}
|
57 |
+
|
58 |
+
# with torch.no_grad():
|
59 |
+
# out = self.model.generate(
|
60 |
+
# **processed_image
|
61 |
+
# )
|
62 |
+
# captions = self.processor.batch_decode(out, skip_special_tokens=True)
|
63 |
+
|
64 |
+
return {"captions": generated_caption}
|