{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f25b7182040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f25b71820d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f25b7182160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f25b71821f0>", "_build": "<function ActorCriticPolicy._build at 0x7f25b7182280>", "forward": "<function ActorCriticPolicy.forward at 0x7f25b7182310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f25b71823a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f25b7182430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f25b71824c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f25b7182550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f25b71825e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f25b717ad80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVdwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksahZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoFEsahZRoGHSUUpSMBl9zaGFwZZRLGoWUjANsb3eUaBAolmgAAAAAAAAAAACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGoWUaBh0lFKUjARoaWdolGgQKJZoAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxqFlGgYdJRSlIwIbG93X3JlcHKUjAQtaW5mlIwJaGlnaF9yZXBylIwDaW5mlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]", "_shape": [26], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVaQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBAolgYAAAAAAAAAAQEBAQEBlGgUSwaFlGgYdJRSlIwGX3NoYXBllEsGhZSMA2xvd5RoECiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLBoWUaBh0lFKUjARoaWdolGgQKJYYAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksGhZRoGHSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBFneW0udXRpbHMuc2VlZGluZ5SMJVJhbmRvbU51bWJlckdlbmVyYXRvci5fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg6ihAuwyFizbgdRdyGmZ9h0FxnjANpbmOUihA//t36EnoJZzN/fE9rs+gtdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "RandomNumberGenerator(PCG64)"}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1658706223.2913327, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVCwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjG0vaG9tZS94cmgxL2V4cGVyaW1lbnRzL2hmX2RlZXBfcmxfY291cnNlL2hmX2Vudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxtL2hvbWUveHJoMS9leHBlcmltZW50cy9oZl9kZWVwX3JsX2NvdXJzZS9oZl9lbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAQAAAAAAAKZukED1lJkoydDzPbSf179Gw6+m2S4xPcmD871JVV7AO5S3P1zBHjxxpRFAd4BtPKA1wr+HifC5CRcfwLq6x7tPIBnA2tJ9vFeNMj/V1AM8MQf8vtTREL6rIlq+BJisvykJ8738afu9pm6QQPWUmSjJ0PM9tJ/Xv0bDr6bZLjE9yYPzvUlVXsBvbuI/XMEePMBxGUB3gG08x4vdv4eJ8LmKMxnAurrHu2nDM8Da0n28JJIoP9XUAzwxB/y+1NEQvqsiWr4EmKy/KQnzvfxp+72mbpBA9ZSZKMnQ8z20n9e/RsOvptkuMT3Jg/O9SVVewEqTtD9cwR48NGYUQHeAbTzjhvS/h4nwuQEuH8C6use7zgM2wNrSfbwHQD8/1dQDPDEH/L7U0RC+qyJavgSYrL8pCfO9/Gn7vaZukED1lJkoydDzPbSf179Gw6+m2S4xPcmD871JVV7AIRbcP1zBHjxLtDNAd4BtPL1I0L+HifC50+D4v7q6x7uhZBjA2tJ9vMb3TD/V1AM8MQf8vtTREL6rIlq+BJisvykJ8738afu9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESxqGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAQAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAaJqEvgAAAABuhfq9AAAAANRdq74AAAAAbUCwPgAAAACI42U6AAAAAEm7mz8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA7ZoK+AAAAAITeUb0AAAAA1bigvgAAAAAoGIc+AAAAACaV+jwAAAAAGlCSPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCJkgL4AAAAAlvqQvQAAAAC5HYa+AAAAAO2loT4AAAAAcE8lPAAAAAAbCpY/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+Z6IvgAAAAA4sIY9AAAAAE9U574AAAAAi1jFPgAAAACeJAE+AAAAAFjwlD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESxqGlIwBQ5R0lFKULg=="}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI28/OSntOWMAWyUTegDjAF0lEdAlVJQxnFo+XV9lChoBkdAkmlAv114gWgHTegDaAhHQJVSQUGmk311fZQoaAZHQJIj5urIYFdoB03oA2gIR0CVUjHU+cH4dX2UKGgGR0CSK/doFmnPaAdN6ANoCEdAlVIiuMdcS3V9lChoBkdAkbxObExZdWgHTegDaAhHQJVdm+49X911fZQoaAZHQJLfMjv/io9oB03oA2gIR0CVXYx4IKMOdX2UKGgGR0CQQ6Vs1sLwaAdN6ANoCEdAlV19E5Qxe3V9lChoBkdAkjTznaFmF2gHTegDaAhHQJVdbeWOZLJ1fZQoaAZHQJQJMGC7K7toB03oA2gIR0CVaMYUFjd6dX2UKGgGR0CSvpvLX+VDaAdN6ANoCEdAlWi2hufmLnV9lChoBkdAkyhCkO7QLWgHTegDaAhHQJVopxxT8511fZQoaAZHQJCn8+wC8vpoB03oA2gIR0CVaJfyf+S9dX2UKGgGR0CTrDB0p3HJaAdN6ANoCEdAlXPoVuaWonV9lChoBkdAk+XAjQiRn2gHTegDaAhHQJVz2NfgJkZ1fZQoaAZHQJMF32RJVbRoB03oA2gIR0CVc8lkH2RJdX2UKGgGR0CRmxQ2/BWQaAdN6ANoCEdAlXO6S5iEx3V9lChoBkdAk6pjIzWPLmgHTegDaAhHQJV/Eu14Pf91fZQoaAZHQJNROh6By0doB03oA2gIR0CVfwNs3yZsdX2UKGgGR0CSoM2+wkgPaAdN6ANoCEdAlX7z/hl183V9lChoBkdAlGARzzVc2WgHTegDaAhHQJV+5NO/L1V1fZQoaAZHQJESxnEl3QloB03oA2gIR0CVijfcN6PbdX2UKGgGR0CTJgJaJQ+EaAdN6ANoCEdAlYooUeuFH3V9lChoBkdAk3EZ9iMHbGgHTegDaAhHQJWKGOmzjWF1fZQoaAZHQJGMntgKF7FoB03oA2gIR0CVigm9xp+MdX2UKGgGR0CVT57wKBuoaAdN6ANoCEdAlZVkS7GvOnV9lChoBkdAlDDPbGm1pmgHTegDaAhHQJWVVMwlByF1fZQoaAZHQJRtC1y/9HdoB03oA2gIR0CVlUVcUucudX2UKGgGR0CTrN8zAN5MaAdN6ANoCEdAlZU2LHdXT3V9lChoBkdAlEPfEOy3TmgHTegDaAhHQJWgot03fhx1fZQoaAZHQJQwY5HVf/poB03oA2gIR0CVoJNTcZccdX2UKGgGR0CUWIXgtOEeaAdN6ANoCEdAlaCD6N2ki3V9lChoBkdAkq9rIkqto2gHTegDaAhHQJWgdMDfWMF1fZQoaAZHQJPwEq8UVSJoB03oA2gIR0CVq8QBgeA/dX2UKGgGR0CUsIzXjENwaAdN6ANoCEdAlau0gwGnoHV9lChoBkdAlLvvUSZjQWgHTegDaAhHQJWrpRaX8fp1fZQoaAZHQJNEHmdRR/FoB03oA2gIR0CVq5XiiqQzdX2UKGgGR0CT9D/nGKhtaAdN6ANoCEdAlbb6oESuhnV9lChoBkdAk8YiFXaJymgHTegDaAhHQJW26xZ+x4Z1fZQoaAZHQJSOnZ5AyEdoB03oA2gIR0CVttuuRs/IdX2UKGgGR0CUquo8IRh+aAdN6ANoCEdAlbbMhs67unV9lChoBkdAk/FBKg7HQ2gHTegDaAhHQJXCIxdpqRF1fZQoaAZHQJHWXPSlWOpoB03oA2gIR0CVwhOUdJardX2UKGgGR0CS7Cc7hegMaAdN6ANoCEdAlcIEJ8fFJnV9lChoBkdAlAbrHZK3/mgHTegDaAhHQJXB9QGfPHF1fZQoaAZHQJSCTI8yN4toB03oA2gIR0CVzPmTC+DfdX2UKGgGR0CTU6l3hXKbaAdN6ANoCEdAlczqFEiMYXV9lChoBkdAk0FDzundf2gHTegDaAhHQJXM2qtHQQd1fZQoaAZHQJN72mrKeTVoB03oA2gIR0CVzMuMdcSodX2UKGgGR0CSAWL5RCQcaAdN6ANoCEdAldfV8stkF3V9lChoBkdAkqTYbwSamWgHTegDaAhHQJXXxm7J4jd1fZQoaAZHQJNUBWkrPMVoB03oA2gIR0CV17cE/0NCdX2UKGgGR0CTTU8F6iTMaAdN6ANoCEdAlden3QD3d3V9lChoBkdAkP5c5OrQxGgHTegDaAhHQJXio8mrsB11fZQoaAZHQJPhVgE2YOVoB03oA2gIR0CV4pRKHwgDdX2UKGgGR0CTDjv3JxNqaAdN6ANoCEdAleKE5+6RQ3V9lChoBkdAk08ko0ALiWgHTegDaAhHQJXidcSoOx11fZQoaAZHQJOsoeOn2qVoB03oA2gIR0CV7XjQzDXOdX2UKGgGR0CVkwQOWjXWaAdN6ANoCEdAle1pRfnfVXV9lChoBkdAk9ZUxdpqRGgHTegDaAhHQJXtWcy31Bd1fZQoaAZHQJPrI4+8oQZoB03oA2gIR0CV7UqcVgx8dX2UKGgGR0CT4ckCV8kVaAdN6ANoCEdAlfhLilzltHV9lChoBkdAlC+HJPqLTGgHTegDaAhHQJX4PA+IM0B1fZQoaAZHQJPBR3qzJIVoB03oA2gIR0CV+CydnTRZdX2UKGgGR0CUe9ENvwVkaAdN6ANoCEdAlfgdcbBGhHV9lChoBkdAkym7Ackt3GgHTegDaAhHQJYDISteUpx1fZQoaAZHQJP9HduYQatoB03oA2gIR0CWAxGs3hn8dX2UKGgGR0CSy2LytmthaAdN6ANoCEdAlgMCQ5myxHV9lChoBkdAlNrmlMyrP2gHTegDaAhHQJYC8xbjcVR1fZQoaAZHQJRBEo4MnZ1oB03oA2gIR0CWDjRvFWGRdX2UKGgGR0CVIhVJ+UhWaAdN6ANoCEdAlg4k43m3fHV9lChoBkdAlGMbTc6/7GgHTegDaAhHQJYOFW+49X91fZQoaAZHQJRBQzyjHn5oB03oA2gIR0CWDgZCfHxSdX2UKGgGR0CT8cFQEZBLaAdN6ANoCEdAlhlovSMLnnV9lChoBkdAlbjucx0uDmgHTegDaAhHQJYZWTLW7OF1fZQoaAZHQJN41nZkCmxoB03oA2gIR0CWGUnIQvpRdX2UKGgGR0CUO/Bj4HopaAdN6ANoCEdAlhk6oqCpWHV9lChoBkdAkvRhNmDlHWgHTegDaAhHQJYkqwC8vmJ1fZQoaAZHQJRI35O8CgdoB03oA2gIR0CWJJuEEkjYdX2UKGgGR0CSE28YAKfGaAdN6ANoCEdAliSMDGLk0nV9lChoBkdAk4gIYFaB7WgHTegDaAhHQJYkfN/vv0B1fZQoaAZHQJP3Gol2NedoB03oA2gIR0CWL9SeAd4ndX2UKGgGR0CS+mbeuV5baAdN6ANoCEdAli/FE/jbSXV9lChoBkdAkxWNA5aNdmgHTegDaAhHQJYvta5f+jx1fZQoaAZHQJLjgwGnn+1oB03oA2gIR0CWL6aIN3GGdX2UKGgGR0CTbZrj5sTGaAdN6ANoCEdAljscwpON53V9lChoBkdAlVLtUsFt9GgHTegDaAhHQJY7DTz/ZNB1fZQoaAZHQJNRe8WbgCRoB03oA2gIR0CWOv3IdU83dX2UKGgGR0CU2wShJyyVaAdN6ANoCEdAljruo99tuXV9lChoBkdAkarPMSsbN2gHTegDaAhHQJZGVQ9A5aN1fZQoaAZHQJQ55nL7oB9oB03oA2gIR0CWRkWPtD2KdX2UKGgGR0CT+hy8jAzpaAdN6ANoCEdAlkY2JJoTPHV9lChoBkdAk4BPapPykWgHTegDaAhHQJZGJv5xiod1fZQoaAZHQJQXiKZUkv9oB03oA2gIR0CWUW89Oh0ydX2UKGgGR0CTtU6Vt4zKaAdN6ANoCEdAllFfvKEFn3V9lChoBkdAlELUb961LWgHTegDaAhHQJZRUEq2Brh1fZQoaAZHQJPMUtEofCBoB03oA2gIR0CWUUEf1YhddX2UKGgGR0CSccvqTr3TaAdN6ANoCEdAllyWfoRqXXV9lChoBkdAk7WCCvovBmgHTegDaAhHQJZchwEQoTh1fZQoaAZHQJTMMHTqjahoB03oA2gIR0CWXHeZXuE3dX2UKGgGR0CUjyOIInjRaAdN6ANoCEdAllxoc3l0YHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.0-41-generic-x86_64-with-glibc2.29 #44~20.04.1-Ubuntu SMP Fri Jun 24 13:27:29 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.6.0", "PyTorch": "1.8.2+cu111", "GPU Enabled": "True", "Numpy": "1.23.1", "Gym": "0.24.0"}} |