--- tags: - generated_from_trainer datasets: - common_voice metrics: - accuracy model-index: - name: kinyarwanda_finetuned_model results: - task: name: Causal Language Modeling type: text-generation dataset: name: common_voice rw type: common_voice config: rw split: validation args: rw metrics: - name: Accuracy type: accuracy value: 0.512215461897924 language: - rw --- # Paper and Citation Paper: [Few-Shot Cross-Lingual Transfer for Prompting Large Language Models in Low-Resource Languages](https://arxiv.org/abs/2403.06018) ``` @misc{toukmaji2024fewshot, title={Few-Shot Cross-Lingual Transfer for Prompting Large Language Models in Low-Resource Languages}, author={Christopher Toukmaji}, year={2024}, eprint={2403.06018}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` # kinyarwanda_finetuned_model This model is a fine-tuned version of [HF_llama](https://huggingface.co/HF_llama) on the common_voice rw dataset. It achieves the following results on the evaluation set: - Loss: 2.2024 - Accuracy: 0.5122 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 4 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3