File size: 9,127 Bytes
c642393 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from copy import deepcopy
from nnunet.network_architecture.custom_modules.helperModules import Identity
from torch import nn
class ConvDropoutNormReLU(nn.Module):
def __init__(self, input_channels, output_channels, kernel_size, network_props):
"""
if network_props['dropout_op'] is None then no dropout
if network_props['norm_op'] is None then no norm
:param input_channels:
:param output_channels:
:param kernel_size:
:param network_props:
"""
super(ConvDropoutNormReLU, self).__init__()
network_props = deepcopy(network_props) # network_props is a dict and mutable, so we deepcopy to be safe.
self.conv = network_props['conv_op'](input_channels, output_channels, kernel_size,
padding=[(i - 1) // 2 for i in kernel_size],
**network_props['conv_op_kwargs'])
# maybe dropout
if network_props['dropout_op'] is not None:
self.do = network_props['dropout_op'](**network_props['dropout_op_kwargs'])
else:
self.do = Identity()
if network_props['norm_op'] is not None:
self.norm = network_props['norm_op'](output_channels, **network_props['norm_op_kwargs'])
else:
self.norm = Identity()
self.nonlin = network_props['nonlin'](**network_props['nonlin_kwargs'])
self.all = nn.Sequential(self.conv, self.do, self.norm, self.nonlin)
def forward(self, x):
return self.all(x)
class StackedConvLayers(nn.Module):
def __init__(self, input_channels, output_channels, kernel_size, network_props, num_convs, first_stride=None):
"""
if network_props['dropout_op'] is None then no dropout
if network_props['norm_op'] is None then no norm
:param input_channels:
:param output_channels:
:param kernel_size:
:param network_props:
"""
super(StackedConvLayers, self).__init__()
network_props = deepcopy(network_props) # network_props is a dict and mutable, so we deepcopy to be safe.
network_props_first = deepcopy(network_props)
if first_stride is not None:
network_props_first['conv_op_kwargs']['stride'] = first_stride
self.convs = nn.Sequential(
ConvDropoutNormReLU(input_channels, output_channels, kernel_size, network_props_first),
*[ConvDropoutNormReLU(output_channels, output_channels, kernel_size, network_props) for _ in
range(num_convs - 1)]
)
def forward(self, x):
return self.convs(x)
class BasicResidualBlock(nn.Module):
def __init__(self, in_planes, out_planes, kernel_size, props, stride=None):
"""
This is the conv bn nonlin conv bn nonlin kind of block
:param in_planes:
:param out_planes:
:param props:
:param override_stride:
"""
super().__init__()
self.kernel_size = kernel_size
props['conv_op_kwargs']['stride'] = 1
self.stride = stride
self.props = props
self.out_planes = out_planes
self.in_planes = in_planes
if stride is not None:
kwargs_conv1 = deepcopy(props['conv_op_kwargs'])
kwargs_conv1['stride'] = stride
else:
kwargs_conv1 = props['conv_op_kwargs']
self.conv1 = props['conv_op'](in_planes, out_planes, kernel_size, padding=[(i - 1) // 2 for i in kernel_size],
**kwargs_conv1)
self.norm1 = props['norm_op'](out_planes, **props['norm_op_kwargs'])
self.nonlin1 = props['nonlin'](**props['nonlin_kwargs'])
if props['dropout_op_kwargs']['p'] != 0:
self.dropout = props['dropout_op'](**props['dropout_op_kwargs'])
else:
self.dropout = Identity()
self.conv2 = props['conv_op'](out_planes, out_planes, kernel_size, padding=[(i - 1) // 2 for i in kernel_size],
**props['conv_op_kwargs'])
self.norm2 = props['norm_op'](out_planes, **props['norm_op_kwargs'])
self.nonlin2 = props['nonlin'](**props['nonlin_kwargs'])
if (self.stride is not None and any((i != 1 for i in self.stride))) or (in_planes != out_planes):
stride_here = stride if stride is not None else 1
self.downsample_skip = nn.Sequential(props['conv_op'](in_planes, out_planes, 1, stride_here, bias=False),
props['norm_op'](out_planes, **props['norm_op_kwargs']))
else:
self.downsample_skip = lambda x: x
def forward(self, x):
residual = x
out = self.dropout(self.conv1(x))
out = self.nonlin1(self.norm1(out))
out = self.norm2(self.conv2(out))
residual = self.downsample_skip(residual)
out += residual
return self.nonlin2(out)
class ResidualBottleneckBlock(nn.Module):
def __init__(self, in_planes, out_planes, kernel_size, props, stride=None):
"""
This is the conv bn nonlin conv bn nonlin kind of block
:param in_planes:
:param out_planes:
:param props:
:param override_stride:
"""
super().__init__()
if props['dropout_op_kwargs'] is None and props['dropout_op_kwargs'] > 0:
raise NotImplementedError("ResidualBottleneckBlock does not yet support dropout!")
self.kernel_size = kernel_size
props['conv_op_kwargs']['stride'] = 1
self.stride = stride
self.props = props
self.out_planes = out_planes
self.in_planes = in_planes
self.bottleneck_planes = out_planes // 4
if stride is not None:
kwargs_conv1 = deepcopy(props['conv_op_kwargs'])
kwargs_conv1['stride'] = stride
else:
kwargs_conv1 = props['conv_op_kwargs']
self.conv1 = props['conv_op'](in_planes, self.bottleneck_planes, [1 for _ in kernel_size], padding=[0 for i in kernel_size],
**kwargs_conv1)
self.norm1 = props['norm_op'](self.bottleneck_planes, **props['norm_op_kwargs'])
self.nonlin1 = props['nonlin'](**props['nonlin_kwargs'])
self.conv2 = props['conv_op'](self.bottleneck_planes, self.bottleneck_planes, kernel_size, padding=[(i - 1) // 2 for i in kernel_size],
**props['conv_op_kwargs'])
self.norm2 = props['norm_op'](self.bottleneck_planes, **props['norm_op_kwargs'])
self.nonlin2 = props['nonlin'](**props['nonlin_kwargs'])
self.conv3 = props['conv_op'](self.bottleneck_planes, out_planes, [1 for _ in kernel_size], padding=[0 for i in kernel_size],
**props['conv_op_kwargs'])
self.norm3 = props['norm_op'](out_planes, **props['norm_op_kwargs'])
self.nonlin3 = props['nonlin'](**props['nonlin_kwargs'])
if (self.stride is not None and any((i != 1 for i in self.stride))) or (in_planes != out_planes):
stride_here = stride if stride is not None else 1
self.downsample_skip = nn.Sequential(props['conv_op'](in_planes, out_planes, 1, stride_here, bias=False),
props['norm_op'](out_planes, **props['norm_op_kwargs']))
else:
self.downsample_skip = lambda x: x
def forward(self, x):
residual = x
out = self.nonlin1(self.norm1(self.conv1(x)))
out = self.nonlin2(self.norm2(self.conv2(out)))
out = self.norm3(self.conv3(out))
residual = self.downsample_skip(residual)
out += residual
return self.nonlin3(out)
class ResidualLayer(nn.Module):
def __init__(self, input_channels, output_channels, kernel_size, network_props, num_blocks, first_stride=None, block=BasicResidualBlock):
super().__init__()
network_props = deepcopy(network_props) # network_props is a dict and mutable, so we deepcopy to be safe.
self.convs = nn.Sequential(
block(input_channels, output_channels, kernel_size, network_props, first_stride),
*[block(output_channels, output_channels, kernel_size, network_props) for _ in
range(num_blocks - 1)]
)
def forward(self, x):
return self.convs(x)
|