File size: 19,122 Bytes
c642393 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import ast
from copy import deepcopy
from multiprocessing.pool import Pool
import numpy as np
from nnunet.configuration import default_num_threads
from nnunet.evaluation.evaluator import aggregate_scores
from scipy.ndimage import label
import SimpleITK as sitk
from nnunet.utilities.sitk_stuff import copy_geometry
from batchgenerators.utilities.file_and_folder_operations import *
import shutil
def load_remove_save(input_file: str, output_file: str, for_which_classes: list,
minimum_valid_object_size: dict = None):
# Only objects larger than minimum_valid_object_size will be removed. Keys in minimum_valid_object_size must
# match entries in for_which_classes
img_in = sitk.ReadImage(input_file)
img_npy = sitk.GetArrayFromImage(img_in)
volume_per_voxel = float(np.prod(img_in.GetSpacing(), dtype=np.float64))
image, largest_removed, kept_size = remove_all_but_the_largest_connected_component(img_npy, for_which_classes,
volume_per_voxel,
minimum_valid_object_size)
# print(input_file, "kept:", kept_size)
img_out_itk = sitk.GetImageFromArray(image)
img_out_itk = copy_geometry(img_out_itk, img_in)
sitk.WriteImage(img_out_itk, output_file)
return largest_removed, kept_size
def remove_all_but_the_largest_connected_component(image: np.ndarray, for_which_classes: list, volume_per_voxel: float,
minimum_valid_object_size: dict = None):
"""
removes all but the largest connected component, individually for each class
:param image:
:param for_which_classes: can be None. Should be list of int. Can also be something like [(1, 2), 2, 4].
Here (1, 2) will be treated as a joint region, not individual classes (example LiTS here we can use (1, 2)
to use all foreground classes together)
:param minimum_valid_object_size: Only objects larger than minimum_valid_object_size will be removed. Keys in
minimum_valid_object_size must match entries in for_which_classes
:return:
"""
if for_which_classes is None:
for_which_classes = np.unique(image)
for_which_classes = for_which_classes[for_which_classes > 0]
assert 0 not in for_which_classes, "cannot remove background"
largest_removed = {}
kept_size = {}
for c in for_which_classes:
if isinstance(c, (list, tuple)):
c = tuple(c) # otherwise it cant be used as key in the dict
mask = np.zeros_like(image, dtype=bool)
for cl in c:
mask[image == cl] = True
else:
mask = image == c
# get labelmap and number of objects
lmap, num_objects = label(mask.astype(int))
# collect object sizes
object_sizes = {}
for object_id in range(1, num_objects + 1):
object_sizes[object_id] = (lmap == object_id).sum() * volume_per_voxel
largest_removed[c] = None
kept_size[c] = None
if num_objects > 0:
# we always keep the largest object. We could also consider removing the largest object if it is smaller
# than minimum_valid_object_size in the future but we don't do that now.
maximum_size = max(object_sizes.values())
kept_size[c] = maximum_size
for object_id in range(1, num_objects + 1):
# we only remove objects that are not the largest
if object_sizes[object_id] != maximum_size:
# we only remove objects that are smaller than minimum_valid_object_size
remove = True
if minimum_valid_object_size is not None:
remove = object_sizes[object_id] < minimum_valid_object_size[c]
if remove:
image[(lmap == object_id) & mask] = 0
if largest_removed[c] is None:
largest_removed[c] = object_sizes[object_id]
else:
largest_removed[c] = max(largest_removed[c], object_sizes[object_id])
return image, largest_removed, kept_size
def load_postprocessing(json_file):
'''
loads the relevant part of the pkl file that is needed for applying postprocessing
:param pkl_file:
:return:
'''
a = load_json(json_file)
if 'min_valid_object_sizes' in a.keys():
min_valid_object_sizes = ast.literal_eval(a['min_valid_object_sizes'])
else:
min_valid_object_sizes = None
return a['for_which_classes'], min_valid_object_sizes
def determine_postprocessing(base, gt_labels_folder, raw_subfolder_name="validation_raw",
temp_folder="temp",
final_subf_name="validation_final", processes=default_num_threads,
dice_threshold=0, debug=False,
advanced_postprocessing=False,
pp_filename="postprocessing.json"):
"""
:param base:
:param gt_labels_folder: subfolder of base with niftis of ground truth labels
:param raw_subfolder_name: subfolder of base with niftis of predicted (non-postprocessed) segmentations
:param temp_folder: used to store temporary data, will be deleted after we are done here undless debug=True
:param final_subf_name: final results will be stored here (subfolder of base)
:param processes:
:param dice_threshold: only apply postprocessing if results is better than old_result+dice_threshold (can be used as eps)
:param debug: if True then the temporary files will not be deleted
:return:
"""
# lets see what classes are in the dataset
classes = [int(i) for i in load_json(join(base, raw_subfolder_name, "summary.json"))['results']['mean'].keys() if
int(i) != 0]
folder_all_classes_as_fg = join(base, temp_folder + "_allClasses")
folder_per_class = join(base, temp_folder + "_perClass")
if isdir(folder_all_classes_as_fg):
shutil.rmtree(folder_all_classes_as_fg)
if isdir(folder_per_class):
shutil.rmtree(folder_per_class)
# multiprocessing rules
p = Pool(processes)
assert isfile(join(base, raw_subfolder_name, "summary.json")), "join(base, raw_subfolder_name) does not " \
"contain a summary.json"
# these are all the files we will be dealing with
fnames = subfiles(join(base, raw_subfolder_name), suffix=".nii.gz", join=False)
# make output and temp dir
maybe_mkdir_p(folder_all_classes_as_fg)
maybe_mkdir_p(folder_per_class)
maybe_mkdir_p(join(base, final_subf_name))
pp_results = {}
pp_results['dc_per_class_raw'] = {}
pp_results['dc_per_class_pp_all'] = {} # dice scores after treating all foreground classes as one
pp_results['dc_per_class_pp_per_class'] = {} # dice scores after removing everything except larges cc
# independently for each class after we already did dc_per_class_pp_all
pp_results['for_which_classes'] = []
pp_results['min_valid_object_sizes'] = {}
validation_result_raw = load_json(join(base, raw_subfolder_name, "summary.json"))['results']
pp_results['num_samples'] = len(validation_result_raw['all'])
validation_result_raw = validation_result_raw['mean']
if advanced_postprocessing:
# first treat all foreground classes as one and remove all but the largest foreground connected component
results = []
for f in fnames:
predicted_segmentation = join(base, raw_subfolder_name, f)
# now remove all but the largest connected component for each class
output_file = join(folder_all_classes_as_fg, f)
results.append(p.starmap_async(load_remove_save, ((predicted_segmentation, output_file, (classes,)),)))
results = [i.get() for i in results]
# aggregate max_size_removed and min_size_kept
max_size_removed = {}
min_size_kept = {}
for tmp in results:
mx_rem, min_kept = tmp[0]
for k in mx_rem:
if mx_rem[k] is not None:
if max_size_removed.get(k) is None:
max_size_removed[k] = mx_rem[k]
else:
max_size_removed[k] = max(max_size_removed[k], mx_rem[k])
for k in min_kept:
if min_kept[k] is not None:
if min_size_kept.get(k) is None:
min_size_kept[k] = min_kept[k]
else:
min_size_kept[k] = min(min_size_kept[k], min_kept[k])
print("foreground vs background, smallest valid object size was", min_size_kept[tuple(classes)])
print("removing only objects smaller than that...")
else:
min_size_kept = None
# we need to rerun the step from above, now with the size constraint
pred_gt_tuples = []
results = []
# first treat all foreground classes as one and remove all but the largest foreground connected component
for f in fnames:
predicted_segmentation = join(base, raw_subfolder_name, f)
# now remove all but the largest connected component for each class
output_file = join(folder_all_classes_as_fg, f)
results.append(
p.starmap_async(load_remove_save, ((predicted_segmentation, output_file, (classes,), min_size_kept),)))
pred_gt_tuples.append([output_file, join(gt_labels_folder, f)])
_ = [i.get() for i in results]
# evaluate postprocessed predictions
_ = aggregate_scores(pred_gt_tuples, labels=classes,
json_output_file=join(folder_all_classes_as_fg, "summary.json"),
json_author="Fabian", num_threads=processes)
# now we need to figure out if doing this improved the dice scores. We will implement that defensively in so far
# that if a single class got worse as a result we won't do this. We can change this in the future but right now I
# prefer to do it this way
validation_result_PP_test = load_json(join(folder_all_classes_as_fg, "summary.json"))['results']['mean']
for c in classes:
dc_raw = validation_result_raw[str(c)]['Dice']
dc_pp = validation_result_PP_test[str(c)]['Dice']
pp_results['dc_per_class_raw'][str(c)] = dc_raw
pp_results['dc_per_class_pp_all'][str(c)] = dc_pp
# true if new is better
do_fg_cc = False
comp = [pp_results['dc_per_class_pp_all'][str(cl)] > (pp_results['dc_per_class_raw'][str(cl)] + dice_threshold) for
cl in classes]
before = np.mean([pp_results['dc_per_class_raw'][str(cl)] for cl in classes])
after = np.mean([pp_results['dc_per_class_pp_all'][str(cl)] for cl in classes])
print("Foreground vs background")
print("before:", before)
print("after: ", after)
if any(comp):
# at least one class improved - yay!
# now check if another got worse
# true if new is worse
any_worse = any(
[pp_results['dc_per_class_pp_all'][str(cl)] < pp_results['dc_per_class_raw'][str(cl)] for cl in classes])
if not any_worse:
pp_results['for_which_classes'].append(classes)
if min_size_kept is not None:
pp_results['min_valid_object_sizes'].update(deepcopy(min_size_kept))
do_fg_cc = True
print("Removing all but the largest foreground region improved results!")
print('for_which_classes', classes)
print('min_valid_object_sizes', min_size_kept)
else:
# did not improve things - don't do it
pass
if len(classes) > 1:
# now depending on whether we do remove all but the largest foreground connected component we define the source dir
# for the next one to be the raw or the temp dir
if do_fg_cc:
source = folder_all_classes_as_fg
else:
source = join(base, raw_subfolder_name)
if advanced_postprocessing:
# now run this for each class separately
results = []
for f in fnames:
predicted_segmentation = join(source, f)
output_file = join(folder_per_class, f)
results.append(p.starmap_async(load_remove_save, ((predicted_segmentation, output_file, classes),)))
results = [i.get() for i in results]
# aggregate max_size_removed and min_size_kept
max_size_removed = {}
min_size_kept = {}
for tmp in results:
mx_rem, min_kept = tmp[0]
for k in mx_rem:
if mx_rem[k] is not None:
if max_size_removed.get(k) is None:
max_size_removed[k] = mx_rem[k]
else:
max_size_removed[k] = max(max_size_removed[k], mx_rem[k])
for k in min_kept:
if min_kept[k] is not None:
if min_size_kept.get(k) is None:
min_size_kept[k] = min_kept[k]
else:
min_size_kept[k] = min(min_size_kept[k], min_kept[k])
print("classes treated separately, smallest valid object sizes are")
print(min_size_kept)
print("removing only objects smaller than that")
else:
min_size_kept = None
# rerun with the size thresholds from above
pred_gt_tuples = []
results = []
for f in fnames:
predicted_segmentation = join(source, f)
output_file = join(folder_per_class, f)
results.append(p.starmap_async(load_remove_save, ((predicted_segmentation, output_file, classes, min_size_kept),)))
pred_gt_tuples.append([output_file, join(gt_labels_folder, f)])
_ = [i.get() for i in results]
# evaluate postprocessed predictions
_ = aggregate_scores(pred_gt_tuples, labels=classes,
json_output_file=join(folder_per_class, "summary.json"),
json_author="Fabian", num_threads=processes)
if do_fg_cc:
old_res = deepcopy(validation_result_PP_test)
else:
old_res = validation_result_raw
# these are the new dice scores
validation_result_PP_test = load_json(join(folder_per_class, "summary.json"))['results']['mean']
for c in classes:
dc_raw = old_res[str(c)]['Dice']
dc_pp = validation_result_PP_test[str(c)]['Dice']
pp_results['dc_per_class_pp_per_class'][str(c)] = dc_pp
print(c)
print("before:", dc_raw)
print("after: ", dc_pp)
if dc_pp > (dc_raw + dice_threshold):
pp_results['for_which_classes'].append(int(c))
if min_size_kept is not None:
pp_results['min_valid_object_sizes'].update({c: min_size_kept[c]})
print("Removing all but the largest region for class %d improved results!" % c)
print('min_valid_object_sizes', min_size_kept)
else:
print("Only one class present, no need to do each class separately as this is covered in fg vs bg")
if not advanced_postprocessing:
pp_results['min_valid_object_sizes'] = None
print("done")
print("for which classes:")
print(pp_results['for_which_classes'])
print("min_object_sizes")
print(pp_results['min_valid_object_sizes'])
pp_results['validation_raw'] = raw_subfolder_name
pp_results['validation_final'] = final_subf_name
# now that we have a proper for_which_classes, apply that
pred_gt_tuples = []
results = []
for f in fnames:
predicted_segmentation = join(base, raw_subfolder_name, f)
# now remove all but the largest connected component for each class
output_file = join(base, final_subf_name, f)
results.append(p.starmap_async(load_remove_save, (
(predicted_segmentation, output_file, pp_results['for_which_classes'],
pp_results['min_valid_object_sizes']),)))
pred_gt_tuples.append([output_file,
join(gt_labels_folder, f)])
_ = [i.get() for i in results]
# evaluate postprocessed predictions
_ = aggregate_scores(pred_gt_tuples, labels=classes,
json_output_file=join(base, final_subf_name, "summary.json"),
json_author="Fabian", num_threads=processes)
pp_results['min_valid_object_sizes'] = str(pp_results['min_valid_object_sizes'])
save_json(pp_results, join(base, pp_filename))
# delete temp
if not debug:
shutil.rmtree(folder_per_class)
shutil.rmtree(folder_all_classes_as_fg)
p.close()
p.join()
print("done")
def apply_postprocessing_to_folder(input_folder: str, output_folder: str, for_which_classes: list,
min_valid_object_size:dict=None, num_processes=8):
"""
applies removing of all but the largest connected component to all niftis in a folder
:param min_valid_object_size:
:param min_valid_object_size:
:param input_folder:
:param output_folder:
:param for_which_classes:
:param num_processes:
:return:
"""
maybe_mkdir_p(output_folder)
p = Pool(num_processes)
nii_files = subfiles(input_folder, suffix=".nii.gz", join=False)
input_files = [join(input_folder, i) for i in nii_files]
out_files = [join(output_folder, i) for i in nii_files]
results = p.starmap_async(load_remove_save, zip(input_files, out_files, [for_which_classes] * len(input_files),
[min_valid_object_size] * len(input_files)))
res = results.get()
p.close()
p.join()
if __name__ == "__main__":
input_folder = "/media/fabian/DKFZ/predictions_Fabian/Liver_and_LiverTumor"
output_folder = "/media/fabian/DKFZ/predictions_Fabian/Liver_and_LiverTumor_postprocessed"
for_which_classes = [(1, 2), ]
apply_postprocessing_to_folder(input_folder, output_folder, for_which_classes)
|