Christian90 commited on
Commit
c406505
·
1 Parent(s): 2db3538

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.78 +/- 0.35
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9afecc061c42ff8a8c371f9891e1b0c4bd5c6e3dd5289cd8a575ac8c0e811714
3
+ size 108161
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a9
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5d12d7f790>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f5d12d812c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1678973743208434034,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVFwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMci9ob21lL2NrYWhtYW5uL21pbmljb25kYTMvZW52cy9yZWluZm9yY2VtZW50bGVhcm5pbmcvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMci9ob21lL2NrYWhtYW5uL21pbmljb25kYTMvZW52cy9yZWluZm9yY2VtZW50bGVhcm5pbmcvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAVgnVPkhvo7tbpBQ/VgnVPkhvo7tbpBQ/VgnVPkhvo7tbpBQ/VgnVPkhvo7tbpBQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAeOq4vt3+gT9mTCU/6WCMP3h3nD/SWiK/TxpWv1gnaz+7mkW/XVe4v0IdWz/Cb2s/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABWCdU+SG+ju1ukFD9dxYM7cbPpOo3uNzxWCdU+SG+ju1ukFD9dxYM7cbPpOo3uNzxWCdU+SG+ju1ukFD9dxYM7cbPpOo3uNzxWCdU+SG+ju1ukFD9dxYM7cbPpOo3uNzyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.41608685 -0.00498763 0.58063287]\n [ 0.41608685 -0.00498763 0.58063287]\n [ 0.41608685 -0.00498763 0.58063287]\n [ 0.41608685 -0.00498763 0.58063287]]",
60
+ "desired_goal": "[[-0.36116385 1.0155903 0.645697 ]\n [ 1.0967075 1.2223959 -0.6341983 ]\n [-0.83633894 0.9185691 -0.77189225]\n [-1.4401661 0.8559152 0.91967404]]",
61
+ "observation": "[[ 0.41608685 -0.00498763 0.58063287 0.00402133 0.001783 0.01122631]\n [ 0.41608685 -0.00498763 0.58063287 0.00402133 0.001783 0.01122631]\n [ 0.41608685 -0.00498763 0.58063287 0.00402133 0.001783 0.01122631]\n [ 0.41608685 -0.00498763 0.58063287 0.00402133 0.001783 0.01122631]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaIXDvZZe271MU6c9uSKPPcphLLpE55s7MOMuPfffb7wyd9k9LihxPKhhDL7KdO89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.0954693 -0.107114 0.08170184]\n [ 0.06989045 -0.00065759 0.00475779]\n [ 0.04269713 -0.0146408 0.10618438]\n [ 0.01471905 -0.13709128 0.11692198]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI31D4bB1c8L+UhpRSlIwBbJRLMowBdJRHQJ93wcDKYAt1fZQoaAZoCWgPQwi8QbRWtDnYv5SGlFKUaBVLMmgWR0Cfd12icoYvdX2UKGgGaAloD0MIPStpxTcUAsCUhpRSlGgVSzJoFkdAn3b5hWo3rHV9lChoBmgJaA9DCMP0vYbgOOi/lIaUUpRoFUsyaBZHQJ92lt52Qnx1fZQoaAZoCWgPQwie7GZGPxrXv5SGlFKUaBVLMmgWR0CfeWrjo6jndX2UKGgGaAloD0MIqWxYU1lU8r+UhpRSlGgVSzJoFkdAn3kG1IAfdXV9lChoBmgJaA9DCIzZklUR7uK/lIaUUpRoFUsyaBZHQJ94opvxYq51fZQoaAZoCWgPQwjp1JXP8rzlv5SGlFKUaBVLMmgWR0CfeD/2kBS2dX2UKGgGaAloD0MIo5Ol1vuN77+UhpRSlGgVSzJoFkdAn3sLNwBHTnV9lChoBmgJaA9DCDVeukkMQvu/lIaUUpRoFUsyaBZHQJ96px7zCk51fZQoaAZoCWgPQwg+6USCqSbwv5SGlFKUaBVLMmgWR0CfekKuSwGGdX2UKGgGaAloD0MI5/7qcd+q+L+UhpRSlGgVSzJoFkdAn3ngCKaXr3V9lChoBmgJaA9DCPbOaKuSCPi/lIaUUpRoFUsyaBZHQJ98u1RceKd1fZQoaAZoCWgPQwhCIQIOocrtv5SGlFKUaBVLMmgWR0CffFcdYGMXdX2UKGgGaAloD0MIO6kvSzu17L+UhpRSlGgVSzJoFkdAn3vy+lCTlnV9lChoBmgJaA9DCHU6kPXU6uK/lIaUUpRoFUsyaBZHQJ97kGpuMuR1fZQoaAZoCWgPQwhAwcWKGszyv5SGlFKUaBVLMmgWR0CffnAjIJZ4dX2UKGgGaAloD0MIO+XRjbCo4r+UhpRSlGgVSzJoFkdAn34MAWBSUHV9lChoBmgJaA9DCMQHdvwXCOK/lIaUUpRoFUsyaBZHQJ99p9JBgNR1fZQoaAZoCWgPQwjfxJCcTNzov5SGlFKUaBVLMmgWR0CffUVKf4ATdX2UKGgGaAloD0MIhzO/mgME07+UhpRSlGgVSzJoFkdAn4Ak9Mbm2nV9lChoBmgJaA9DCHRiD+1jBei/lIaUUpRoFUsyaBZHQJ9/wMlTm4l1fZQoaAZoCWgPQwhX7ZqQ1tjxv5SGlFKUaBVLMmgWR0Cff1yd4FA3dX2UKGgGaAloD0MIIhtIF5tW4r+UhpRSlGgVSzJoFkdAn376A8Swn3V9lChoBmgJaA9DCGAeMuVDUOi/lIaUUpRoFUsyaBZHQJ+B2Y0EX+F1fZQoaAZoCWgPQwh8SPje3yD2v5SGlFKUaBVLMmgWR0CfgXVwPy08dX2UKGgGaAloD0MIYeKPos7c8r+UhpRSlGgVSzJoFkdAn4ERSLqD9XV9lChoBmgJaA9DCLsru2BwTe2/lIaUUpRoFUsyaBZHQJ+Arrqt5lh1fZQoaAZoCWgPQwj03hgCgOPsv5SGlFKUaBVLMmgWR0Cfg4+glF+edX2UKGgGaAloD0MI2T7kLVc/3L+UhpRSlGgVSzJoFkdAn4Mrj1f3OHV9lChoBmgJaA9DCF/Rrdf0IOO/lIaUUpRoFUsyaBZHQJ+Cx3xFy7x1fZQoaAZoCWgPQwiFlQoqqv71v5SGlFKUaBVLMmgWR0CfgmT4cm0FdX2UKGgGaAloD0MIPYGwU6ya5L+UhpRSlGgVSzJoFkdAn4V4agmJFnV9lChoBmgJaA9DCL+YLVkVIfi/lIaUUpRoFUsyaBZHQJ+FFUR3/xV1fZQoaAZoCWgPQwgHeT2YFF/zv5SGlFKUaBVLMmgWR0CfhLEsrd30dX2UKGgGaAloD0MI+UhKehga87+UhpRSlGgVSzJoFkdAn4RP+4smOXV9lChoBmgJaA9DCBtK7UW0nfi/lIaUUpRoFUsyaBZHQJ+HWgVXV9Z1fZQoaAZoCWgPQwifqkIDsazyv5SGlFKUaBVLMmgWR0CfhvZmI0qIdX2UKGgGaAloD0MIHqhTHt0I37+UhpRSlGgVSzJoFkdAn4aSQcPvrnV9lChoBmgJaA9DCEc7bvjddOa/lIaUUpRoFUsyaBZHQJ+GL51vETB1fZQoaAZoCWgPQwjLngQ25+Dbv5SGlFKUaBVLMmgWR0CfiQtf5ULldX2UKGgGaAloD0MI8Q9bejQV97+UhpRSlGgVSzJoFkdAn4inSnccl3V9lChoBmgJaA9DCDFcHQBx1+S/lIaUUpRoFUsyaBZHQJ+IQzUI9kl1fZQoaAZoCWgPQwhfXKrSFtflv5SGlFKUaBVLMmgWR0Cfh+CP6sQvdX2UKGgGaAloD0MIxR9FnbkH4r+UhpRSlGgVSzJoFkdAn4q646Oo53V9lChoBmgJaA9DCB9Mio9PCPa/lIaUUpRoFUsyaBZHQJ+KVsenyd51fZQoaAZoCWgPQwhgzJasirDxv5SGlFKUaBVLMmgWR0CfifKRMewLdX2UKGgGaAloD0MIge1gxD6B7L+UhpRSlGgVSzJoFkdAn4mQF5fMOnV9lChoBmgJaA9DCMdmR6rv/Oa/lIaUUpRoFUsyaBZHQJ+MceNkvsZ1fZQoaAZoCWgPQwjGpSptcQ3sv5SGlFKUaBVLMmgWR0CfjA2zOX3QdX2UKGgGaAloD0MIhugQOBJo77+UhpRSlGgVSzJoFkdAn4upmqYJFHV9lChoBmgJaA9DCCLgEKrU7N+/lIaUUpRoFUsyaBZHQJ+LRvybx3F1fZQoaAZoCWgPQwiNJEG4Aorvv5SGlFKUaBVLMmgWR0Cfjh9X9zfadX2UKGgGaAloD0MImfIhqBo95b+UhpRSlGgVSzJoFkdAn427PIGQjnV9lChoBmgJaA9DCMnH7gIlxfa/lIaUUpRoFUsyaBZHQJ+NVwjt5Ut1fZQoaAZoCWgPQwjFILByaFH0v5SGlFKUaBVLMmgWR0CfjPSB9TgmdX2UKGgGaAloD0MI097gC5Pp9L+UhpRSlGgVSzJoFkdAn4/5mmLtNXV9lChoBmgJaA9DCBMKEXAIlfu/lIaUUpRoFUsyaBZHQJ+PlXjlxOt1fZQoaAZoCWgPQwiAZaVJKejwv5SGlFKUaBVLMmgWR0CfjzFPBSDRdX2UKGgGaAloD0MIjSeCOA8n7b+UhpRSlGgVSzJoFkdAn47OwPiDNHV9lChoBmgJaA9DCJvniHyX0uy/lIaUUpRoFUsyaBZHQJ+Rs+W4Vh11fZQoaAZoCWgPQwhAw5s1eN/sv5SGlFKUaBVLMmgWR0CfkU/A0sOHdX2UKGgGaAloD0MIQwBw7Nnz6L+UhpRSlGgVSzJoFkdAn5DrpeNT+HV9lChoBmgJaA9DCI4G8BZIUOq/lIaUUpRoFUsyaBZHQJ+QiRbKRuF1fZQoaAZoCWgPQwi366UpAhzhv5SGlFKUaBVLMmgWR0Cfk2N3np0PdX2UKGgGaAloD0MImbwBZr4D5L+UhpRSlGgVSzJoFkdAn5L/OyE+PnV9lChoBmgJaA9DCCxIMxZN5+O/lIaUUpRoFUsyaBZHQJ+SmxLTQVt1fZQoaAZoCWgPQwhX7ZqQ1pjlv5SGlFKUaBVLMmgWR0Cfkjh5gPVedX2UKGgGaAloD0MIWrqCbcQT7L+UhpRSlGgVSzJoFkdAn5URgiNbT3V9lChoBmgJaA9DCML7qlyo/OW/lIaUUpRoFUsyaBZHQJ+UrV5KODJ1fZQoaAZoCWgPQwiiQnVz8Xfyv5SGlFKUaBVLMmgWR0CflEky1uzhdX2UKGgGaAloD0MIGlBvRs1X1L+UhpRSlGgVSzJoFkdAn5PmtU4rBnV9lChoBmgJaA9DCNsYO+ElONy/lIaUUpRoFUsyaBZHQJ+XA9SuQp51fZQoaAZoCWgPQwi77q1ITFDkv5SGlFKUaBVLMmgWR0Cflp/YJ3PidX2UKGgGaAloD0MI9KeN6nQgy7+UhpRSlGgVSzJoFkdAn5Y73bmEG3V9lChoBmgJaA9DCN3rpL4s7dq/lIaUUpRoFUsyaBZHQJ+V2VGCqZN1fZQoaAZoCWgPQwhruwm+afrov5SGlFKUaBVLMmgWR0CfmNDs+mm+dX2UKGgGaAloD0MI91eP+1br57+UhpRSlGgVSzJoFkdAn5hsx46fa3V9lChoBmgJaA9DCBcSMLq8OeS/lIaUUpRoFUsyaBZHQJ+YCLl3hXN1fZQoaAZoCWgPQwh2cLA3MSTUv5SGlFKUaBVLMmgWR0Cfl6Ysd1dPdX2UKGgGaAloD0MIJCU9DK1O07+UhpRSlGgVSzJoFkdAn5q1O45LiHV9lChoBmgJaA9DCCp0XmOXqPS/lIaUUpRoFUsyaBZHQJ+aUScslLR1fZQoaAZoCWgPQwhDVUyln/D1v5SGlFKUaBVLMmgWR0Cfme0FbFCLdX2UKGgGaAloD0MIqrUwC+2c07+UhpRSlGgVSzJoFkdAn5mKgdwNsnV9lChoBmgJaA9DCIpZL4Zyotm/lIaUUpRoFUsyaBZHQJ+csU47zTZ1fZQoaAZoCWgPQwgWaHdIMUDTv5SGlFKUaBVLMmgWR0CfnE4gieNDdX2UKGgGaAloD0MIsJEkCFdA5b+UhpRSlGgVSzJoFkdAn5vrBj4Ho3V9lChoBmgJaA9DCI+oUN1cfOe/lIaUUpRoFUsyaBZHQJ+biXIEKVp1fZQoaAZoCWgPQwjRH5p5ck3ov5SGlFKUaBVLMmgWR0CfnqC8vmHQdX2UKGgGaAloD0MIAyZw626e0r+UhpRSlGgVSzJoFkdAn548p5NXYHV9lChoBmgJaA9DCHlafuAqT+S/lIaUUpRoFUsyaBZHQJ+d2IRAbAF1fZQoaAZoCWgPQwhRLSKKyZvjv5SGlFKUaBVLMmgWR0CfnXYKIBRydX2UKGgGaAloD0MIdVlMbD6u1b+UhpRSlGgVSzJoFkdAn6BsmShaknV9lChoBmgJaA9DCIIavoV1o/C/lIaUUpRoFUsyaBZHQJ+gCHFglWx1fZQoaAZoCWgPQwjj/iPToVPvv5SGlFKUaBVLMmgWR0Cfn6RSgoPTdX2UKGgGaAloD0MI3GJ+bmhK6r+UhpRSlGgVSzJoFkdAn59BppN9IHV9lChoBmgJaA9DCBMLfEW3nvC/lIaUUpRoFUsyaBZHQJ+iH7yhBZ91fZQoaAZoCWgPQwgw16IFaNvxv5SGlFKUaBVLMmgWR0CfobundfsvdX2UKGgGaAloD0MIXJNuS+SC5r+UhpRSlGgVSzJoFkdAn6FXiR4hU3V9lChoBmgJaA9DCLQ4Y5gTtOC/lIaUUpRoFUsyaBZHQJ+g9NbkfcN1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77debc025b007ffd9c6da096ece3498b4d2c91dc22593fa35733ab18e01f7fea
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcba7b1f46bd59da9a5acfb08bd983afdc1a0daaecf541bf4eccdcff89a8dde2
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-4.15.0-201-generic-x86_64-with-glibc2.27 # 212-Ubuntu SMP Mon Nov 28 11:29:59 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0a9
4
+ - PyTorch: 2.0.0+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.2
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5d12d7f790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5d12d812c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678973743208434034, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVFwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMci9ob21lL2NrYWhtYW5uL21pbmljb25kYTMvZW52cy9yZWluZm9yY2VtZW50bGVhcm5pbmcvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMci9ob21lL2NrYWhtYW5uL21pbmljb25kYTMvZW52cy9yZWluZm9yY2VtZW50bGVhcm5pbmcvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAVgnVPkhvo7tbpBQ/VgnVPkhvo7tbpBQ/VgnVPkhvo7tbpBQ/VgnVPkhvo7tbpBQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAeOq4vt3+gT9mTCU/6WCMP3h3nD/SWiK/TxpWv1gnaz+7mkW/XVe4v0IdWz/Cb2s/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABWCdU+SG+ju1ukFD9dxYM7cbPpOo3uNzxWCdU+SG+ju1ukFD9dxYM7cbPpOo3uNzxWCdU+SG+ju1ukFD9dxYM7cbPpOo3uNzxWCdU+SG+ju1ukFD9dxYM7cbPpOo3uNzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.41608685 -0.00498763 0.58063287]\n [ 0.41608685 -0.00498763 0.58063287]\n [ 0.41608685 -0.00498763 0.58063287]\n [ 0.41608685 -0.00498763 0.58063287]]", "desired_goal": "[[-0.36116385 1.0155903 0.645697 ]\n [ 1.0967075 1.2223959 -0.6341983 ]\n [-0.83633894 0.9185691 -0.77189225]\n [-1.4401661 0.8559152 0.91967404]]", "observation": "[[ 0.41608685 -0.00498763 0.58063287 0.00402133 0.001783 0.01122631]\n [ 0.41608685 -0.00498763 0.58063287 0.00402133 0.001783 0.01122631]\n [ 0.41608685 -0.00498763 0.58063287 0.00402133 0.001783 0.01122631]\n [ 0.41608685 -0.00498763 0.58063287 0.00402133 0.001783 0.01122631]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaIXDvZZe271MU6c9uSKPPcphLLpE55s7MOMuPfffb7wyd9k9LihxPKhhDL7KdO89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.0954693 -0.107114 0.08170184]\n [ 0.06989045 -0.00065759 0.00475779]\n [ 0.04269713 -0.0146408 0.10618438]\n [ 0.01471905 -0.13709128 0.11692198]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI31D4bB1c8L+UhpRSlIwBbJRLMowBdJRHQJ93wcDKYAt1fZQoaAZoCWgPQwi8QbRWtDnYv5SGlFKUaBVLMmgWR0Cfd12icoYvdX2UKGgGaAloD0MIPStpxTcUAsCUhpRSlGgVSzJoFkdAn3b5hWo3rHV9lChoBmgJaA9DCMP0vYbgOOi/lIaUUpRoFUsyaBZHQJ92lt52Qnx1fZQoaAZoCWgPQwie7GZGPxrXv5SGlFKUaBVLMmgWR0CfeWrjo6jndX2UKGgGaAloD0MIqWxYU1lU8r+UhpRSlGgVSzJoFkdAn3kG1IAfdXV9lChoBmgJaA9DCIzZklUR7uK/lIaUUpRoFUsyaBZHQJ94opvxYq51fZQoaAZoCWgPQwjp1JXP8rzlv5SGlFKUaBVLMmgWR0CfeD/2kBS2dX2UKGgGaAloD0MIo5Ol1vuN77+UhpRSlGgVSzJoFkdAn3sLNwBHTnV9lChoBmgJaA9DCDVeukkMQvu/lIaUUpRoFUsyaBZHQJ96px7zCk51fZQoaAZoCWgPQwg+6USCqSbwv5SGlFKUaBVLMmgWR0CfekKuSwGGdX2UKGgGaAloD0MI5/7qcd+q+L+UhpRSlGgVSzJoFkdAn3ngCKaXr3V9lChoBmgJaA9DCPbOaKuSCPi/lIaUUpRoFUsyaBZHQJ98u1RceKd1fZQoaAZoCWgPQwhCIQIOocrtv5SGlFKUaBVLMmgWR0CffFcdYGMXdX2UKGgGaAloD0MIO6kvSzu17L+UhpRSlGgVSzJoFkdAn3vy+lCTlnV9lChoBmgJaA9DCHU6kPXU6uK/lIaUUpRoFUsyaBZHQJ97kGpuMuR1fZQoaAZoCWgPQwhAwcWKGszyv5SGlFKUaBVLMmgWR0CffnAjIJZ4dX2UKGgGaAloD0MIO+XRjbCo4r+UhpRSlGgVSzJoFkdAn34MAWBSUHV9lChoBmgJaA9DCMQHdvwXCOK/lIaUUpRoFUsyaBZHQJ99p9JBgNR1fZQoaAZoCWgPQwjfxJCcTNzov5SGlFKUaBVLMmgWR0CffUVKf4ATdX2UKGgGaAloD0MIhzO/mgME07+UhpRSlGgVSzJoFkdAn4Ak9Mbm2nV9lChoBmgJaA9DCHRiD+1jBei/lIaUUpRoFUsyaBZHQJ9/wMlTm4l1fZQoaAZoCWgPQwhX7ZqQ1tjxv5SGlFKUaBVLMmgWR0Cff1yd4FA3dX2UKGgGaAloD0MIIhtIF5tW4r+UhpRSlGgVSzJoFkdAn376A8Swn3V9lChoBmgJaA9DCGAeMuVDUOi/lIaUUpRoFUsyaBZHQJ+B2Y0EX+F1fZQoaAZoCWgPQwh8SPje3yD2v5SGlFKUaBVLMmgWR0CfgXVwPy08dX2UKGgGaAloD0MIYeKPos7c8r+UhpRSlGgVSzJoFkdAn4ERSLqD9XV9lChoBmgJaA9DCLsru2BwTe2/lIaUUpRoFUsyaBZHQJ+Arrqt5lh1fZQoaAZoCWgPQwj03hgCgOPsv5SGlFKUaBVLMmgWR0Cfg4+glF+edX2UKGgGaAloD0MI2T7kLVc/3L+UhpRSlGgVSzJoFkdAn4Mrj1f3OHV9lChoBmgJaA9DCF/Rrdf0IOO/lIaUUpRoFUsyaBZHQJ+Cx3xFy7x1fZQoaAZoCWgPQwiFlQoqqv71v5SGlFKUaBVLMmgWR0CfgmT4cm0FdX2UKGgGaAloD0MIPYGwU6ya5L+UhpRSlGgVSzJoFkdAn4V4agmJFnV9lChoBmgJaA9DCL+YLVkVIfi/lIaUUpRoFUsyaBZHQJ+FFUR3/xV1fZQoaAZoCWgPQwgHeT2YFF/zv5SGlFKUaBVLMmgWR0CfhLEsrd30dX2UKGgGaAloD0MI+UhKehga87+UhpRSlGgVSzJoFkdAn4RP+4smOXV9lChoBmgJaA9DCBtK7UW0nfi/lIaUUpRoFUsyaBZHQJ+HWgVXV9Z1fZQoaAZoCWgPQwifqkIDsazyv5SGlFKUaBVLMmgWR0CfhvZmI0qIdX2UKGgGaAloD0MIHqhTHt0I37+UhpRSlGgVSzJoFkdAn4aSQcPvrnV9lChoBmgJaA9DCEc7bvjddOa/lIaUUpRoFUsyaBZHQJ+GL51vETB1fZQoaAZoCWgPQwjLngQ25+Dbv5SGlFKUaBVLMmgWR0CfiQtf5ULldX2UKGgGaAloD0MI8Q9bejQV97+UhpRSlGgVSzJoFkdAn4inSnccl3V9lChoBmgJaA9DCDFcHQBx1+S/lIaUUpRoFUsyaBZHQJ+IQzUI9kl1fZQoaAZoCWgPQwhfXKrSFtflv5SGlFKUaBVLMmgWR0Cfh+CP6sQvdX2UKGgGaAloD0MIxR9FnbkH4r+UhpRSlGgVSzJoFkdAn4q646Oo53V9lChoBmgJaA9DCB9Mio9PCPa/lIaUUpRoFUsyaBZHQJ+KVsenyd51fZQoaAZoCWgPQwhgzJasirDxv5SGlFKUaBVLMmgWR0CfifKRMewLdX2UKGgGaAloD0MIge1gxD6B7L+UhpRSlGgVSzJoFkdAn4mQF5fMOnV9lChoBmgJaA9DCMdmR6rv/Oa/lIaUUpRoFUsyaBZHQJ+MceNkvsZ1fZQoaAZoCWgPQwjGpSptcQ3sv5SGlFKUaBVLMmgWR0CfjA2zOX3QdX2UKGgGaAloD0MIhugQOBJo77+UhpRSlGgVSzJoFkdAn4upmqYJFHV9lChoBmgJaA9DCCLgEKrU7N+/lIaUUpRoFUsyaBZHQJ+LRvybx3F1fZQoaAZoCWgPQwiNJEG4Aorvv5SGlFKUaBVLMmgWR0Cfjh9X9zfadX2UKGgGaAloD0MImfIhqBo95b+UhpRSlGgVSzJoFkdAn427PIGQjnV9lChoBmgJaA9DCMnH7gIlxfa/lIaUUpRoFUsyaBZHQJ+NVwjt5Ut1fZQoaAZoCWgPQwjFILByaFH0v5SGlFKUaBVLMmgWR0CfjPSB9TgmdX2UKGgGaAloD0MI097gC5Pp9L+UhpRSlGgVSzJoFkdAn4/5mmLtNXV9lChoBmgJaA9DCBMKEXAIlfu/lIaUUpRoFUsyaBZHQJ+PlXjlxOt1fZQoaAZoCWgPQwiAZaVJKejwv5SGlFKUaBVLMmgWR0CfjzFPBSDRdX2UKGgGaAloD0MIjSeCOA8n7b+UhpRSlGgVSzJoFkdAn47OwPiDNHV9lChoBmgJaA9DCJvniHyX0uy/lIaUUpRoFUsyaBZHQJ+Rs+W4Vh11fZQoaAZoCWgPQwhAw5s1eN/sv5SGlFKUaBVLMmgWR0CfkU/A0sOHdX2UKGgGaAloD0MIQwBw7Nnz6L+UhpRSlGgVSzJoFkdAn5DrpeNT+HV9lChoBmgJaA9DCI4G8BZIUOq/lIaUUpRoFUsyaBZHQJ+QiRbKRuF1fZQoaAZoCWgPQwi366UpAhzhv5SGlFKUaBVLMmgWR0Cfk2N3np0PdX2UKGgGaAloD0MImbwBZr4D5L+UhpRSlGgVSzJoFkdAn5L/OyE+PnV9lChoBmgJaA9DCCxIMxZN5+O/lIaUUpRoFUsyaBZHQJ+SmxLTQVt1fZQoaAZoCWgPQwhX7ZqQ1pjlv5SGlFKUaBVLMmgWR0Cfkjh5gPVedX2UKGgGaAloD0MIWrqCbcQT7L+UhpRSlGgVSzJoFkdAn5URgiNbT3V9lChoBmgJaA9DCML7qlyo/OW/lIaUUpRoFUsyaBZHQJ+UrV5KODJ1fZQoaAZoCWgPQwiiQnVz8Xfyv5SGlFKUaBVLMmgWR0CflEky1uzhdX2UKGgGaAloD0MIGlBvRs1X1L+UhpRSlGgVSzJoFkdAn5PmtU4rBnV9lChoBmgJaA9DCNsYO+ElONy/lIaUUpRoFUsyaBZHQJ+XA9SuQp51fZQoaAZoCWgPQwi77q1ITFDkv5SGlFKUaBVLMmgWR0Cflp/YJ3PidX2UKGgGaAloD0MI9KeN6nQgy7+UhpRSlGgVSzJoFkdAn5Y73bmEG3V9lChoBmgJaA9DCN3rpL4s7dq/lIaUUpRoFUsyaBZHQJ+V2VGCqZN1fZQoaAZoCWgPQwhruwm+afrov5SGlFKUaBVLMmgWR0CfmNDs+mm+dX2UKGgGaAloD0MI91eP+1br57+UhpRSlGgVSzJoFkdAn5hsx46fa3V9lChoBmgJaA9DCBcSMLq8OeS/lIaUUpRoFUsyaBZHQJ+YCLl3hXN1fZQoaAZoCWgPQwh2cLA3MSTUv5SGlFKUaBVLMmgWR0Cfl6Ysd1dPdX2UKGgGaAloD0MIJCU9DK1O07+UhpRSlGgVSzJoFkdAn5q1O45LiHV9lChoBmgJaA9DCCp0XmOXqPS/lIaUUpRoFUsyaBZHQJ+aUScslLR1fZQoaAZoCWgPQwhDVUyln/D1v5SGlFKUaBVLMmgWR0Cfme0FbFCLdX2UKGgGaAloD0MIqrUwC+2c07+UhpRSlGgVSzJoFkdAn5mKgdwNsnV9lChoBmgJaA9DCIpZL4Zyotm/lIaUUpRoFUsyaBZHQJ+csU47zTZ1fZQoaAZoCWgPQwgWaHdIMUDTv5SGlFKUaBVLMmgWR0CfnE4gieNDdX2UKGgGaAloD0MIsJEkCFdA5b+UhpRSlGgVSzJoFkdAn5vrBj4Ho3V9lChoBmgJaA9DCI+oUN1cfOe/lIaUUpRoFUsyaBZHQJ+biXIEKVp1fZQoaAZoCWgPQwjRH5p5ck3ov5SGlFKUaBVLMmgWR0CfnqC8vmHQdX2UKGgGaAloD0MIAyZw626e0r+UhpRSlGgVSzJoFkdAn548p5NXYHV9lChoBmgJaA9DCHlafuAqT+S/lIaUUpRoFUsyaBZHQJ+d2IRAbAF1fZQoaAZoCWgPQwhRLSKKyZvjv5SGlFKUaBVLMmgWR0CfnXYKIBRydX2UKGgGaAloD0MIdVlMbD6u1b+UhpRSlGgVSzJoFkdAn6BsmShaknV9lChoBmgJaA9DCIIavoV1o/C/lIaUUpRoFUsyaBZHQJ+gCHFglWx1fZQoaAZoCWgPQwjj/iPToVPvv5SGlFKUaBVLMmgWR0Cfn6RSgoPTdX2UKGgGaAloD0MI3GJ+bmhK6r+UhpRSlGgVSzJoFkdAn59BppN9IHV9lChoBmgJaA9DCBMLfEW3nvC/lIaUUpRoFUsyaBZHQJ+iH7yhBZ91fZQoaAZoCWgPQwgw16IFaNvxv5SGlFKUaBVLMmgWR0CfobundfsvdX2UKGgGaAloD0MIXJNuS+SC5r+UhpRSlGgVSzJoFkdAn6FXiR4hU3V9lChoBmgJaA9DCLQ4Y5gTtOC/lIaUUpRoFUsyaBZHQJ+g9NbkfcN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-4.15.0-201-generic-x86_64-with-glibc2.27 # 212-Ubuntu SMP Mon Nov 28 11:29:59 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0a9", "PyTorch": "2.0.0+cu117", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (340 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.7770620621857234, "std_reward": 0.3547672216708235, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-16T15:30:52.982021"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c95ca92b6f7695799dbdc286b779ccdc4d47c137530e2c854747e1ac4c472c0d
3
+ size 2381