Christian90
commited on
Commit
·
c406505
1
Parent(s):
2db3538
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.78 +/- 0.35
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9afecc061c42ff8a8c371f9891e1b0c4bd5c6e3dd5289cd8a575ac8c0e811714
|
3 |
+
size 108161
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a9
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5d12d7f790>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f5d12d812c0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1678973743208434034,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVFwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMci9ob21lL2NrYWhtYW5uL21pbmljb25kYTMvZW52cy9yZWluZm9yY2VtZW50bGVhcm5pbmcvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMci9ob21lL2NrYWhtYW5uL21pbmljb25kYTMvZW52cy9yZWluZm9yY2VtZW50bGVhcm5pbmcvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAVgnVPkhvo7tbpBQ/VgnVPkhvo7tbpBQ/VgnVPkhvo7tbpBQ/VgnVPkhvo7tbpBQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAeOq4vt3+gT9mTCU/6WCMP3h3nD/SWiK/TxpWv1gnaz+7mkW/XVe4v0IdWz/Cb2s/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABWCdU+SG+ju1ukFD9dxYM7cbPpOo3uNzxWCdU+SG+ju1ukFD9dxYM7cbPpOo3uNzxWCdU+SG+ju1ukFD9dxYM7cbPpOo3uNzxWCdU+SG+ju1ukFD9dxYM7cbPpOo3uNzyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.41608685 -0.00498763 0.58063287]\n [ 0.41608685 -0.00498763 0.58063287]\n [ 0.41608685 -0.00498763 0.58063287]\n [ 0.41608685 -0.00498763 0.58063287]]",
|
60 |
+
"desired_goal": "[[-0.36116385 1.0155903 0.645697 ]\n [ 1.0967075 1.2223959 -0.6341983 ]\n [-0.83633894 0.9185691 -0.77189225]\n [-1.4401661 0.8559152 0.91967404]]",
|
61 |
+
"observation": "[[ 0.41608685 -0.00498763 0.58063287 0.00402133 0.001783 0.01122631]\n [ 0.41608685 -0.00498763 0.58063287 0.00402133 0.001783 0.01122631]\n [ 0.41608685 -0.00498763 0.58063287 0.00402133 0.001783 0.01122631]\n [ 0.41608685 -0.00498763 0.58063287 0.00402133 0.001783 0.01122631]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaIXDvZZe271MU6c9uSKPPcphLLpE55s7MOMuPfffb7wyd9k9LihxPKhhDL7KdO89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.0954693 -0.107114 0.08170184]\n [ 0.06989045 -0.00065759 0.00475779]\n [ 0.04269713 -0.0146408 0.10618438]\n [ 0.01471905 -0.13709128 0.11692198]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI31D4bB1c8L+UhpRSlIwBbJRLMowBdJRHQJ93wcDKYAt1fZQoaAZoCWgPQwi8QbRWtDnYv5SGlFKUaBVLMmgWR0Cfd12icoYvdX2UKGgGaAloD0MIPStpxTcUAsCUhpRSlGgVSzJoFkdAn3b5hWo3rHV9lChoBmgJaA9DCMP0vYbgOOi/lIaUUpRoFUsyaBZHQJ92lt52Qnx1fZQoaAZoCWgPQwie7GZGPxrXv5SGlFKUaBVLMmgWR0CfeWrjo6jndX2UKGgGaAloD0MIqWxYU1lU8r+UhpRSlGgVSzJoFkdAn3kG1IAfdXV9lChoBmgJaA9DCIzZklUR7uK/lIaUUpRoFUsyaBZHQJ94opvxYq51fZQoaAZoCWgPQwjp1JXP8rzlv5SGlFKUaBVLMmgWR0CfeD/2kBS2dX2UKGgGaAloD0MIo5Ol1vuN77+UhpRSlGgVSzJoFkdAn3sLNwBHTnV9lChoBmgJaA9DCDVeukkMQvu/lIaUUpRoFUsyaBZHQJ96px7zCk51fZQoaAZoCWgPQwg+6USCqSbwv5SGlFKUaBVLMmgWR0CfekKuSwGGdX2UKGgGaAloD0MI5/7qcd+q+L+UhpRSlGgVSzJoFkdAn3ngCKaXr3V9lChoBmgJaA9DCPbOaKuSCPi/lIaUUpRoFUsyaBZHQJ98u1RceKd1fZQoaAZoCWgPQwhCIQIOocrtv5SGlFKUaBVLMmgWR0CffFcdYGMXdX2UKGgGaAloD0MIO6kvSzu17L+UhpRSlGgVSzJoFkdAn3vy+lCTlnV9lChoBmgJaA9DCHU6kPXU6uK/lIaUUpRoFUsyaBZHQJ97kGpuMuR1fZQoaAZoCWgPQwhAwcWKGszyv5SGlFKUaBVLMmgWR0CffnAjIJZ4dX2UKGgGaAloD0MIO+XRjbCo4r+UhpRSlGgVSzJoFkdAn34MAWBSUHV9lChoBmgJaA9DCMQHdvwXCOK/lIaUUpRoFUsyaBZHQJ99p9JBgNR1fZQoaAZoCWgPQwjfxJCcTNzov5SGlFKUaBVLMmgWR0CffUVKf4ATdX2UKGgGaAloD0MIhzO/mgME07+UhpRSlGgVSzJoFkdAn4Ak9Mbm2nV9lChoBmgJaA9DCHRiD+1jBei/lIaUUpRoFUsyaBZHQJ9/wMlTm4l1fZQoaAZoCWgPQwhX7ZqQ1tjxv5SGlFKUaBVLMmgWR0Cff1yd4FA3dX2UKGgGaAloD0MIIhtIF5tW4r+UhpRSlGgVSzJoFkdAn376A8Swn3V9lChoBmgJaA9DCGAeMuVDUOi/lIaUUpRoFUsyaBZHQJ+B2Y0EX+F1fZQoaAZoCWgPQwh8SPje3yD2v5SGlFKUaBVLMmgWR0CfgXVwPy08dX2UKGgGaAloD0MIYeKPos7c8r+UhpRSlGgVSzJoFkdAn4ERSLqD9XV9lChoBmgJaA9DCLsru2BwTe2/lIaUUpRoFUsyaBZHQJ+Arrqt5lh1fZQoaAZoCWgPQwj03hgCgOPsv5SGlFKUaBVLMmgWR0Cfg4+glF+edX2UKGgGaAloD0MI2T7kLVc/3L+UhpRSlGgVSzJoFkdAn4Mrj1f3OHV9lChoBmgJaA9DCF/Rrdf0IOO/lIaUUpRoFUsyaBZHQJ+Cx3xFy7x1fZQoaAZoCWgPQwiFlQoqqv71v5SGlFKUaBVLMmgWR0CfgmT4cm0FdX2UKGgGaAloD0MIPYGwU6ya5L+UhpRSlGgVSzJoFkdAn4V4agmJFnV9lChoBmgJaA9DCL+YLVkVIfi/lIaUUpRoFUsyaBZHQJ+FFUR3/xV1fZQoaAZoCWgPQwgHeT2YFF/zv5SGlFKUaBVLMmgWR0CfhLEsrd30dX2UKGgGaAloD0MI+UhKehga87+UhpRSlGgVSzJoFkdAn4RP+4smOXV9lChoBmgJaA9DCBtK7UW0nfi/lIaUUpRoFUsyaBZHQJ+HWgVXV9Z1fZQoaAZoCWgPQwifqkIDsazyv5SGlFKUaBVLMmgWR0CfhvZmI0qIdX2UKGgGaAloD0MIHqhTHt0I37+UhpRSlGgVSzJoFkdAn4aSQcPvrnV9lChoBmgJaA9DCEc7bvjddOa/lIaUUpRoFUsyaBZHQJ+GL51vETB1fZQoaAZoCWgPQwjLngQ25+Dbv5SGlFKUaBVLMmgWR0CfiQtf5ULldX2UKGgGaAloD0MI8Q9bejQV97+UhpRSlGgVSzJoFkdAn4inSnccl3V9lChoBmgJaA9DCDFcHQBx1+S/lIaUUpRoFUsyaBZHQJ+IQzUI9kl1fZQoaAZoCWgPQwhfXKrSFtflv5SGlFKUaBVLMmgWR0Cfh+CP6sQvdX2UKGgGaAloD0MIxR9FnbkH4r+UhpRSlGgVSzJoFkdAn4q646Oo53V9lChoBmgJaA9DCB9Mio9PCPa/lIaUUpRoFUsyaBZHQJ+KVsenyd51fZQoaAZoCWgPQwhgzJasirDxv5SGlFKUaBVLMmgWR0CfifKRMewLdX2UKGgGaAloD0MIge1gxD6B7L+UhpRSlGgVSzJoFkdAn4mQF5fMOnV9lChoBmgJaA9DCMdmR6rv/Oa/lIaUUpRoFUsyaBZHQJ+MceNkvsZ1fZQoaAZoCWgPQwjGpSptcQ3sv5SGlFKUaBVLMmgWR0CfjA2zOX3QdX2UKGgGaAloD0MIhugQOBJo77+UhpRSlGgVSzJoFkdAn4upmqYJFHV9lChoBmgJaA9DCCLgEKrU7N+/lIaUUpRoFUsyaBZHQJ+LRvybx3F1fZQoaAZoCWgPQwiNJEG4Aorvv5SGlFKUaBVLMmgWR0Cfjh9X9zfadX2UKGgGaAloD0MImfIhqBo95b+UhpRSlGgVSzJoFkdAn427PIGQjnV9lChoBmgJaA9DCMnH7gIlxfa/lIaUUpRoFUsyaBZHQJ+NVwjt5Ut1fZQoaAZoCWgPQwjFILByaFH0v5SGlFKUaBVLMmgWR0CfjPSB9TgmdX2UKGgGaAloD0MI097gC5Pp9L+UhpRSlGgVSzJoFkdAn4/5mmLtNXV9lChoBmgJaA9DCBMKEXAIlfu/lIaUUpRoFUsyaBZHQJ+PlXjlxOt1fZQoaAZoCWgPQwiAZaVJKejwv5SGlFKUaBVLMmgWR0CfjzFPBSDRdX2UKGgGaAloD0MIjSeCOA8n7b+UhpRSlGgVSzJoFkdAn47OwPiDNHV9lChoBmgJaA9DCJvniHyX0uy/lIaUUpRoFUsyaBZHQJ+Rs+W4Vh11fZQoaAZoCWgPQwhAw5s1eN/sv5SGlFKUaBVLMmgWR0CfkU/A0sOHdX2UKGgGaAloD0MIQwBw7Nnz6L+UhpRSlGgVSzJoFkdAn5DrpeNT+HV9lChoBmgJaA9DCI4G8BZIUOq/lIaUUpRoFUsyaBZHQJ+QiRbKRuF1fZQoaAZoCWgPQwi366UpAhzhv5SGlFKUaBVLMmgWR0Cfk2N3np0PdX2UKGgGaAloD0MImbwBZr4D5L+UhpRSlGgVSzJoFkdAn5L/OyE+PnV9lChoBmgJaA9DCCxIMxZN5+O/lIaUUpRoFUsyaBZHQJ+SmxLTQVt1fZQoaAZoCWgPQwhX7ZqQ1pjlv5SGlFKUaBVLMmgWR0Cfkjh5gPVedX2UKGgGaAloD0MIWrqCbcQT7L+UhpRSlGgVSzJoFkdAn5URgiNbT3V9lChoBmgJaA9DCML7qlyo/OW/lIaUUpRoFUsyaBZHQJ+UrV5KODJ1fZQoaAZoCWgPQwiiQnVz8Xfyv5SGlFKUaBVLMmgWR0CflEky1uzhdX2UKGgGaAloD0MIGlBvRs1X1L+UhpRSlGgVSzJoFkdAn5PmtU4rBnV9lChoBmgJaA9DCNsYO+ElONy/lIaUUpRoFUsyaBZHQJ+XA9SuQp51fZQoaAZoCWgPQwi77q1ITFDkv5SGlFKUaBVLMmgWR0Cflp/YJ3PidX2UKGgGaAloD0MI9KeN6nQgy7+UhpRSlGgVSzJoFkdAn5Y73bmEG3V9lChoBmgJaA9DCN3rpL4s7dq/lIaUUpRoFUsyaBZHQJ+V2VGCqZN1fZQoaAZoCWgPQwhruwm+afrov5SGlFKUaBVLMmgWR0CfmNDs+mm+dX2UKGgGaAloD0MI91eP+1br57+UhpRSlGgVSzJoFkdAn5hsx46fa3V9lChoBmgJaA9DCBcSMLq8OeS/lIaUUpRoFUsyaBZHQJ+YCLl3hXN1fZQoaAZoCWgPQwh2cLA3MSTUv5SGlFKUaBVLMmgWR0Cfl6Ysd1dPdX2UKGgGaAloD0MIJCU9DK1O07+UhpRSlGgVSzJoFkdAn5q1O45LiHV9lChoBmgJaA9DCCp0XmOXqPS/lIaUUpRoFUsyaBZHQJ+aUScslLR1fZQoaAZoCWgPQwhDVUyln/D1v5SGlFKUaBVLMmgWR0Cfme0FbFCLdX2UKGgGaAloD0MIqrUwC+2c07+UhpRSlGgVSzJoFkdAn5mKgdwNsnV9lChoBmgJaA9DCIpZL4Zyotm/lIaUUpRoFUsyaBZHQJ+csU47zTZ1fZQoaAZoCWgPQwgWaHdIMUDTv5SGlFKUaBVLMmgWR0CfnE4gieNDdX2UKGgGaAloD0MIsJEkCFdA5b+UhpRSlGgVSzJoFkdAn5vrBj4Ho3V9lChoBmgJaA9DCI+oUN1cfOe/lIaUUpRoFUsyaBZHQJ+biXIEKVp1fZQoaAZoCWgPQwjRH5p5ck3ov5SGlFKUaBVLMmgWR0CfnqC8vmHQdX2UKGgGaAloD0MIAyZw626e0r+UhpRSlGgVSzJoFkdAn548p5NXYHV9lChoBmgJaA9DCHlafuAqT+S/lIaUUpRoFUsyaBZHQJ+d2IRAbAF1fZQoaAZoCWgPQwhRLSKKyZvjv5SGlFKUaBVLMmgWR0CfnXYKIBRydX2UKGgGaAloD0MIdVlMbD6u1b+UhpRSlGgVSzJoFkdAn6BsmShaknV9lChoBmgJaA9DCIIavoV1o/C/lIaUUpRoFUsyaBZHQJ+gCHFglWx1fZQoaAZoCWgPQwjj/iPToVPvv5SGlFKUaBVLMmgWR0Cfn6RSgoPTdX2UKGgGaAloD0MI3GJ+bmhK6r+UhpRSlGgVSzJoFkdAn59BppN9IHV9lChoBmgJaA9DCBMLfEW3nvC/lIaUUpRoFUsyaBZHQJ+iH7yhBZ91fZQoaAZoCWgPQwgw16IFaNvxv5SGlFKUaBVLMmgWR0CfobundfsvdX2UKGgGaAloD0MIXJNuS+SC5r+UhpRSlGgVSzJoFkdAn6FXiR4hU3V9lChoBmgJaA9DCLQ4Y5gTtOC/lIaUUpRoFUsyaBZHQJ+g9NbkfcN1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77debc025b007ffd9c6da096ece3498b4d2c91dc22593fa35733ab18e01f7fea
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dcba7b1f46bd59da9a5acfb08bd983afdc1a0daaecf541bf4eccdcff89a8dde2
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-4.15.0-201-generic-x86_64-with-glibc2.27 # 212-Ubuntu SMP Mon Nov 28 11:29:59 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0a9
|
4 |
+
- PyTorch: 2.0.0+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.2
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5d12d7f790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5d12d812c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678973743208434034, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVFwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMci9ob21lL2NrYWhtYW5uL21pbmljb25kYTMvZW52cy9yZWluZm9yY2VtZW50bGVhcm5pbmcvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMci9ob21lL2NrYWhtYW5uL21pbmljb25kYTMvZW52cy9yZWluZm9yY2VtZW50bGVhcm5pbmcvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAVgnVPkhvo7tbpBQ/VgnVPkhvo7tbpBQ/VgnVPkhvo7tbpBQ/VgnVPkhvo7tbpBQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAeOq4vt3+gT9mTCU/6WCMP3h3nD/SWiK/TxpWv1gnaz+7mkW/XVe4v0IdWz/Cb2s/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABWCdU+SG+ju1ukFD9dxYM7cbPpOo3uNzxWCdU+SG+ju1ukFD9dxYM7cbPpOo3uNzxWCdU+SG+ju1ukFD9dxYM7cbPpOo3uNzxWCdU+SG+ju1ukFD9dxYM7cbPpOo3uNzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.41608685 -0.00498763 0.58063287]\n [ 0.41608685 -0.00498763 0.58063287]\n [ 0.41608685 -0.00498763 0.58063287]\n [ 0.41608685 -0.00498763 0.58063287]]", "desired_goal": "[[-0.36116385 1.0155903 0.645697 ]\n [ 1.0967075 1.2223959 -0.6341983 ]\n [-0.83633894 0.9185691 -0.77189225]\n [-1.4401661 0.8559152 0.91967404]]", "observation": "[[ 0.41608685 -0.00498763 0.58063287 0.00402133 0.001783 0.01122631]\n [ 0.41608685 -0.00498763 0.58063287 0.00402133 0.001783 0.01122631]\n [ 0.41608685 -0.00498763 0.58063287 0.00402133 0.001783 0.01122631]\n [ 0.41608685 -0.00498763 0.58063287 0.00402133 0.001783 0.01122631]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaIXDvZZe271MU6c9uSKPPcphLLpE55s7MOMuPfffb7wyd9k9LihxPKhhDL7KdO89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.0954693 -0.107114 0.08170184]\n [ 0.06989045 -0.00065759 0.00475779]\n [ 0.04269713 -0.0146408 0.10618438]\n [ 0.01471905 -0.13709128 0.11692198]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI31D4bB1c8L+UhpRSlIwBbJRLMowBdJRHQJ93wcDKYAt1fZQoaAZoCWgPQwi8QbRWtDnYv5SGlFKUaBVLMmgWR0Cfd12icoYvdX2UKGgGaAloD0MIPStpxTcUAsCUhpRSlGgVSzJoFkdAn3b5hWo3rHV9lChoBmgJaA9DCMP0vYbgOOi/lIaUUpRoFUsyaBZHQJ92lt52Qnx1fZQoaAZoCWgPQwie7GZGPxrXv5SGlFKUaBVLMmgWR0CfeWrjo6jndX2UKGgGaAloD0MIqWxYU1lU8r+UhpRSlGgVSzJoFkdAn3kG1IAfdXV9lChoBmgJaA9DCIzZklUR7uK/lIaUUpRoFUsyaBZHQJ94opvxYq51fZQoaAZoCWgPQwjp1JXP8rzlv5SGlFKUaBVLMmgWR0CfeD/2kBS2dX2UKGgGaAloD0MIo5Ol1vuN77+UhpRSlGgVSzJoFkdAn3sLNwBHTnV9lChoBmgJaA9DCDVeukkMQvu/lIaUUpRoFUsyaBZHQJ96px7zCk51fZQoaAZoCWgPQwg+6USCqSbwv5SGlFKUaBVLMmgWR0CfekKuSwGGdX2UKGgGaAloD0MI5/7qcd+q+L+UhpRSlGgVSzJoFkdAn3ngCKaXr3V9lChoBmgJaA9DCPbOaKuSCPi/lIaUUpRoFUsyaBZHQJ98u1RceKd1fZQoaAZoCWgPQwhCIQIOocrtv5SGlFKUaBVLMmgWR0CffFcdYGMXdX2UKGgGaAloD0MIO6kvSzu17L+UhpRSlGgVSzJoFkdAn3vy+lCTlnV9lChoBmgJaA9DCHU6kPXU6uK/lIaUUpRoFUsyaBZHQJ97kGpuMuR1fZQoaAZoCWgPQwhAwcWKGszyv5SGlFKUaBVLMmgWR0CffnAjIJZ4dX2UKGgGaAloD0MIO+XRjbCo4r+UhpRSlGgVSzJoFkdAn34MAWBSUHV9lChoBmgJaA9DCMQHdvwXCOK/lIaUUpRoFUsyaBZHQJ99p9JBgNR1fZQoaAZoCWgPQwjfxJCcTNzov5SGlFKUaBVLMmgWR0CffUVKf4ATdX2UKGgGaAloD0MIhzO/mgME07+UhpRSlGgVSzJoFkdAn4Ak9Mbm2nV9lChoBmgJaA9DCHRiD+1jBei/lIaUUpRoFUsyaBZHQJ9/wMlTm4l1fZQoaAZoCWgPQwhX7ZqQ1tjxv5SGlFKUaBVLMmgWR0Cff1yd4FA3dX2UKGgGaAloD0MIIhtIF5tW4r+UhpRSlGgVSzJoFkdAn376A8Swn3V9lChoBmgJaA9DCGAeMuVDUOi/lIaUUpRoFUsyaBZHQJ+B2Y0EX+F1fZQoaAZoCWgPQwh8SPje3yD2v5SGlFKUaBVLMmgWR0CfgXVwPy08dX2UKGgGaAloD0MIYeKPos7c8r+UhpRSlGgVSzJoFkdAn4ERSLqD9XV9lChoBmgJaA9DCLsru2BwTe2/lIaUUpRoFUsyaBZHQJ+Arrqt5lh1fZQoaAZoCWgPQwj03hgCgOPsv5SGlFKUaBVLMmgWR0Cfg4+glF+edX2UKGgGaAloD0MI2T7kLVc/3L+UhpRSlGgVSzJoFkdAn4Mrj1f3OHV9lChoBmgJaA9DCF/Rrdf0IOO/lIaUUpRoFUsyaBZHQJ+Cx3xFy7x1fZQoaAZoCWgPQwiFlQoqqv71v5SGlFKUaBVLMmgWR0CfgmT4cm0FdX2UKGgGaAloD0MIPYGwU6ya5L+UhpRSlGgVSzJoFkdAn4V4agmJFnV9lChoBmgJaA9DCL+YLVkVIfi/lIaUUpRoFUsyaBZHQJ+FFUR3/xV1fZQoaAZoCWgPQwgHeT2YFF/zv5SGlFKUaBVLMmgWR0CfhLEsrd30dX2UKGgGaAloD0MI+UhKehga87+UhpRSlGgVSzJoFkdAn4RP+4smOXV9lChoBmgJaA9DCBtK7UW0nfi/lIaUUpRoFUsyaBZHQJ+HWgVXV9Z1fZQoaAZoCWgPQwifqkIDsazyv5SGlFKUaBVLMmgWR0CfhvZmI0qIdX2UKGgGaAloD0MIHqhTHt0I37+UhpRSlGgVSzJoFkdAn4aSQcPvrnV9lChoBmgJaA9DCEc7bvjddOa/lIaUUpRoFUsyaBZHQJ+GL51vETB1fZQoaAZoCWgPQwjLngQ25+Dbv5SGlFKUaBVLMmgWR0CfiQtf5ULldX2UKGgGaAloD0MI8Q9bejQV97+UhpRSlGgVSzJoFkdAn4inSnccl3V9lChoBmgJaA9DCDFcHQBx1+S/lIaUUpRoFUsyaBZHQJ+IQzUI9kl1fZQoaAZoCWgPQwhfXKrSFtflv5SGlFKUaBVLMmgWR0Cfh+CP6sQvdX2UKGgGaAloD0MIxR9FnbkH4r+UhpRSlGgVSzJoFkdAn4q646Oo53V9lChoBmgJaA9DCB9Mio9PCPa/lIaUUpRoFUsyaBZHQJ+KVsenyd51fZQoaAZoCWgPQwhgzJasirDxv5SGlFKUaBVLMmgWR0CfifKRMewLdX2UKGgGaAloD0MIge1gxD6B7L+UhpRSlGgVSzJoFkdAn4mQF5fMOnV9lChoBmgJaA9DCMdmR6rv/Oa/lIaUUpRoFUsyaBZHQJ+MceNkvsZ1fZQoaAZoCWgPQwjGpSptcQ3sv5SGlFKUaBVLMmgWR0CfjA2zOX3QdX2UKGgGaAloD0MIhugQOBJo77+UhpRSlGgVSzJoFkdAn4upmqYJFHV9lChoBmgJaA9DCCLgEKrU7N+/lIaUUpRoFUsyaBZHQJ+LRvybx3F1fZQoaAZoCWgPQwiNJEG4Aorvv5SGlFKUaBVLMmgWR0Cfjh9X9zfadX2UKGgGaAloD0MImfIhqBo95b+UhpRSlGgVSzJoFkdAn427PIGQjnV9lChoBmgJaA9DCMnH7gIlxfa/lIaUUpRoFUsyaBZHQJ+NVwjt5Ut1fZQoaAZoCWgPQwjFILByaFH0v5SGlFKUaBVLMmgWR0CfjPSB9TgmdX2UKGgGaAloD0MI097gC5Pp9L+UhpRSlGgVSzJoFkdAn4/5mmLtNXV9lChoBmgJaA9DCBMKEXAIlfu/lIaUUpRoFUsyaBZHQJ+PlXjlxOt1fZQoaAZoCWgPQwiAZaVJKejwv5SGlFKUaBVLMmgWR0CfjzFPBSDRdX2UKGgGaAloD0MIjSeCOA8n7b+UhpRSlGgVSzJoFkdAn47OwPiDNHV9lChoBmgJaA9DCJvniHyX0uy/lIaUUpRoFUsyaBZHQJ+Rs+W4Vh11fZQoaAZoCWgPQwhAw5s1eN/sv5SGlFKUaBVLMmgWR0CfkU/A0sOHdX2UKGgGaAloD0MIQwBw7Nnz6L+UhpRSlGgVSzJoFkdAn5DrpeNT+HV9lChoBmgJaA9DCI4G8BZIUOq/lIaUUpRoFUsyaBZHQJ+QiRbKRuF1fZQoaAZoCWgPQwi366UpAhzhv5SGlFKUaBVLMmgWR0Cfk2N3np0PdX2UKGgGaAloD0MImbwBZr4D5L+UhpRSlGgVSzJoFkdAn5L/OyE+PnV9lChoBmgJaA9DCCxIMxZN5+O/lIaUUpRoFUsyaBZHQJ+SmxLTQVt1fZQoaAZoCWgPQwhX7ZqQ1pjlv5SGlFKUaBVLMmgWR0Cfkjh5gPVedX2UKGgGaAloD0MIWrqCbcQT7L+UhpRSlGgVSzJoFkdAn5URgiNbT3V9lChoBmgJaA9DCML7qlyo/OW/lIaUUpRoFUsyaBZHQJ+UrV5KODJ1fZQoaAZoCWgPQwiiQnVz8Xfyv5SGlFKUaBVLMmgWR0CflEky1uzhdX2UKGgGaAloD0MIGlBvRs1X1L+UhpRSlGgVSzJoFkdAn5PmtU4rBnV9lChoBmgJaA9DCNsYO+ElONy/lIaUUpRoFUsyaBZHQJ+XA9SuQp51fZQoaAZoCWgPQwi77q1ITFDkv5SGlFKUaBVLMmgWR0Cflp/YJ3PidX2UKGgGaAloD0MI9KeN6nQgy7+UhpRSlGgVSzJoFkdAn5Y73bmEG3V9lChoBmgJaA9DCN3rpL4s7dq/lIaUUpRoFUsyaBZHQJ+V2VGCqZN1fZQoaAZoCWgPQwhruwm+afrov5SGlFKUaBVLMmgWR0CfmNDs+mm+dX2UKGgGaAloD0MI91eP+1br57+UhpRSlGgVSzJoFkdAn5hsx46fa3V9lChoBmgJaA9DCBcSMLq8OeS/lIaUUpRoFUsyaBZHQJ+YCLl3hXN1fZQoaAZoCWgPQwh2cLA3MSTUv5SGlFKUaBVLMmgWR0Cfl6Ysd1dPdX2UKGgGaAloD0MIJCU9DK1O07+UhpRSlGgVSzJoFkdAn5q1O45LiHV9lChoBmgJaA9DCCp0XmOXqPS/lIaUUpRoFUsyaBZHQJ+aUScslLR1fZQoaAZoCWgPQwhDVUyln/D1v5SGlFKUaBVLMmgWR0Cfme0FbFCLdX2UKGgGaAloD0MIqrUwC+2c07+UhpRSlGgVSzJoFkdAn5mKgdwNsnV9lChoBmgJaA9DCIpZL4Zyotm/lIaUUpRoFUsyaBZHQJ+csU47zTZ1fZQoaAZoCWgPQwgWaHdIMUDTv5SGlFKUaBVLMmgWR0CfnE4gieNDdX2UKGgGaAloD0MIsJEkCFdA5b+UhpRSlGgVSzJoFkdAn5vrBj4Ho3V9lChoBmgJaA9DCI+oUN1cfOe/lIaUUpRoFUsyaBZHQJ+biXIEKVp1fZQoaAZoCWgPQwjRH5p5ck3ov5SGlFKUaBVLMmgWR0CfnqC8vmHQdX2UKGgGaAloD0MIAyZw626e0r+UhpRSlGgVSzJoFkdAn548p5NXYHV9lChoBmgJaA9DCHlafuAqT+S/lIaUUpRoFUsyaBZHQJ+d2IRAbAF1fZQoaAZoCWgPQwhRLSKKyZvjv5SGlFKUaBVLMmgWR0CfnXYKIBRydX2UKGgGaAloD0MIdVlMbD6u1b+UhpRSlGgVSzJoFkdAn6BsmShaknV9lChoBmgJaA9DCIIavoV1o/C/lIaUUpRoFUsyaBZHQJ+gCHFglWx1fZQoaAZoCWgPQwjj/iPToVPvv5SGlFKUaBVLMmgWR0Cfn6RSgoPTdX2UKGgGaAloD0MI3GJ+bmhK6r+UhpRSlGgVSzJoFkdAn59BppN9IHV9lChoBmgJaA9DCBMLfEW3nvC/lIaUUpRoFUsyaBZHQJ+iH7yhBZ91fZQoaAZoCWgPQwgw16IFaNvxv5SGlFKUaBVLMmgWR0CfobundfsvdX2UKGgGaAloD0MIXJNuS+SC5r+UhpRSlGgVSzJoFkdAn6FXiR4hU3V9lChoBmgJaA9DCLQ4Y5gTtOC/lIaUUpRoFUsyaBZHQJ+g9NbkfcN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-4.15.0-201-generic-x86_64-with-glibc2.27 # 212-Ubuntu SMP Mon Nov 28 11:29:59 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0a9", "PyTorch": "2.0.0+cu117", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (340 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.7770620621857234, "std_reward": 0.3547672216708235, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-16T15:30:52.982021"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c95ca92b6f7695799dbdc286b779ccdc4d47c137530e2c854747e1ac4c472c0d
|
3 |
+
size 2381
|