import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
def generate_text(prompt, max_length=100): | |
model = AutoModelForCausalLM.from_pretrained("./results") | |
tokenizer = AutoTokenizer.from_pretrained("./results") | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate( | |
**inputs, | |
max_length=max_length, | |
num_return_sequences=1, | |
temperature=0.7, | |
top_p=0.9, | |
do_sample=True | |
) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |