--- language: en license: mit tags: - fundus - diabetic retinopathy - classification datasets: - APTOS - EYEPACS - IDRID - DDR library: timm model-index: - name: seresnet50 results: - task: type: image-classification dataset: name: EYEPACS type: EYEPACS metrics: - type: kappa value: 0.7506328821182251 name: Quadratic Kappa - task: type: image-classification dataset: name: IDRID type: IDRID metrics: - type: kappa value: 0.6988881230354309 name: Quadratic Kappa - task: type: image-classification dataset: name: DDR type: DDR metrics: - type: kappa value: 0.7436707019805908 name: Quadratic Kappa --- # Fundus DR Grading [![Rye](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/rye/main/artwork/badge.json)](https://rye-up.com) [![PyTorch](https://img.shields.io/badge/PyTorch-ee4c2c?logo=pytorch&logoColor=white)](https://pytorch.org/docs/stable/index.html) [![Lightning](https://img.shields.io/badge/Lightning-792ee5?logo=lightning&logoColor=white)](https://lightning.ai/docs/pytorch/stable/) ## Description This project aims to evaluate the performance of different models for the classification of diabetic retinopathy (DR) in fundus images. The reported perfomance metrics are not always consistent in the literature. Our goal is to provide a fair comparison between different models using the same datasets and evaluation protocol.