File size: 70,239 Bytes
239bc3e cd1595d 239bc3e cd1595d 239bc3e cd1595d 239bc3e cd1595d 239bc3e cd1595d 239bc3e cd1595d 239bc3e cd1595d 239bc3e cd1595d 239bc3e cd1595d 239bc3e cd1595d 239bc3e cd1595d 239bc3e cd1595d 239bc3e cd1595d 239bc3e cd1595d 239bc3e cd1595d 239bc3e cd1595d 239bc3e cd1595d 239bc3e cd1595d 239bc3e cd1595d 239bc3e cd1595d 239bc3e cd1595d 239bc3e cd1595d 239bc3e cd1595d 239bc3e cd1595d 239bc3e cd1595d 239bc3e cd1595d 239bc3e cd1595d 239bc3e cd1595d 239bc3e cd1595d 239bc3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:449904
- loss:CosineSimilarityLoss
base_model: CocoRoF/ModernBERT-SimCSE_v04
widget:
- source_sentence: 우리는 움직이는 동행 우주 정지 좌표계에 비례하여 이동하고 있습니다 ... 약 371km / s에서 별자리 leo
쪽으로. "
sentences:
- 두 마리의 독수리가 가지에 앉는다.
- 다른 물체와는 관련이 없는 '정지'는 없다.
- 소녀는 버스의 열린 문 앞에 서 있다.
- source_sentence: 숲에는 개들이 있다.
sentences:
- 양을 보는 아이들.
- 여왕의 배우자를 "왕"이라고 부르지 않는 것은 아주 좋은 이유가 있다. 왜냐하면 그들은 왕이 아니기 때문이다.
- 개들은 숲속에 혼자 있다.
- source_sentence: '첫째, 두 가지 다른 종류의 대시가 있다는 것을 알아야 합니다 : en 대시와 em 대시.'
sentences:
- 그들은 그 물건들을 집 주변에 두고 가거나 집의 정리를 해칠 의도가 없다.
- 세미콜론은 혼자 있을 수 있는 문장에 참여하는데 사용되지만, 그들의 관계를 강조하기 위해 결합됩니다.
- 그의 남동생이 지켜보는 동안 집 앞에서 트럼펫을 연주하는 금발의 아이.
- source_sentence: 한 여성이 생선 껍질을 벗기고 있다.
sentences:
- 한 남자가 수영장으로 뛰어들었다.
- 한 여성이 프라이팬에 노란 혼합물을 부어 넣고 있다.
- 두 마리의 갈색 개가 눈 속에서 서로 놀고 있다.
- source_sentence: 버스가 바쁜 길을 따라 운전한다.
sentences:
- 우리와 같은 태양계가 은하계 밖에서 존재할 수도 있을 것입니다.
- 그 여자는 데이트하러 가는 중이다.
- 녹색 버스가 도로를 따라 내려간다.
datasets:
- x2bee/misc_sts_pairs_v2_kor_kosimcse
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_euclidean
- spearman_euclidean
- pearson_manhattan
- spearman_manhattan
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
model-index:
- name: SentenceTransformer based on CocoRoF/ModernBERT-SimCSE_v04
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts_dev
metrics:
- type: pearson_cosine
value: 0.7947107267431892
name: Pearson Cosine
- type: spearman_cosine
value: 0.8008029938863944
name: Spearman Cosine
- type: pearson_euclidean
value: 0.7729649224022854
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7731836226956725
name: Spearman Euclidean
- type: pearson_manhattan
value: 0.7728910393964163
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7732333197709114
name: Spearman Manhattan
- type: pearson_dot
value: 0.6023258275823691
name: Pearson Dot
- type: spearman_dot
value: 0.5958009787049323
name: Spearman Dot
- type: pearson_max
value: 0.7947107267431892
name: Pearson Max
- type: spearman_max
value: 0.8008029938863944
name: Spearman Max
---
# SentenceTransformer based on CocoRoF/ModernBERT-SimCSE_v04
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [CocoRoF/ModernBERT-SimCSE_v04](https://huggingface.co/CocoRoF/ModernBERT-SimCSE_v04) on the [misc_sts_pairs_v2_kor_kosimcse](https://huggingface.co/datasets/x2bee/misc_sts_pairs_v2_kor_kosimcse) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [CocoRoF/ModernBERT-SimCSE_v04](https://huggingface.co/CocoRoF/ModernBERT-SimCSE_v04) <!-- at revision 7d23b869258e5c726c0f536bccac7e873d510d66 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [misc_sts_pairs_v2_kor_kosimcse](https://huggingface.co/datasets/x2bee/misc_sts_pairs_v2_kor_kosimcse)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("CocoRoF/ModernBERT-SimCSE-multitask_v05")
# Run inference
sentences = [
'버스가 바쁜 길을 따라 운전한다.',
'녹색 버스가 도로를 따라 내려간다.',
'그 여자는 데이트하러 가는 중이다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts_dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| pearson_cosine | 0.7947 |
| spearman_cosine | 0.8008 |
| pearson_euclidean | 0.773 |
| spearman_euclidean | 0.7732 |
| pearson_manhattan | 0.7729 |
| spearman_manhattan | 0.7732 |
| pearson_dot | 0.6023 |
| spearman_dot | 0.5958 |
| pearson_max | 0.7947 |
| **spearman_max** | **0.8008** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### misc_sts_pairs_v2_kor_kosimcse
* Dataset: [misc_sts_pairs_v2_kor_kosimcse](https://huggingface.co/datasets/x2bee/misc_sts_pairs_v2_kor_kosimcse) at [e747415](https://huggingface.co/datasets/x2bee/misc_sts_pairs_v2_kor_kosimcse/tree/e747415cfe9ff51d1c1550b8a07e5014c01dea59)
* Size: 449,904 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 6 tokens</li><li>mean: 15.81 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.18 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 0.11</li><li>mean: 0.77</li><li>max: 1.0</li></ul> |
* Samples:
| sentence1 | sentence2 | score |
|:-------------------------------------------------|:-------------------------------------------|:--------------------------------|
| <code>주홍글씨는 언제 출판되었습니까?</code> | <code>《주홍글씨》는 몇 년에 출판되었습니까?</code> | <code>0.8638778924942017</code> |
| <code>폴란드에서 빨간색과 흰색은 무엇을 의미합니까?</code> | <code>폴란드 국기의 색상은 무엇입니까?</code> | <code>0.6773715019226074</code> |
| <code>노르만인들은 방어를 위해 모트와 베일리 성을 어떻게 사용했는가?</code> | <code>11세기에는 어떻게 모트와 베일리 성을 만들었습니까?</code> | <code>0.7460665702819824</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 1,500 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 6 tokens</li><li>mean: 18.89 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 18.92 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
* Samples:
| sentence1 | sentence2 | score |
|:-------------------------------------|:------------------------------------|:------------------|
| <code>안전모를 가진 한 남자가 춤을 추고 있다.</code> | <code>안전모를 쓴 한 남자가 춤을 추고 있다.</code> | <code>1.0</code> |
| <code>어린아이가 말을 타고 있다.</code> | <code>아이가 말을 타고 있다.</code> | <code>0.95</code> |
| <code>한 남자가 뱀에게 쥐를 먹이고 있다.</code> | <code>남자가 뱀에게 쥐를 먹이고 있다.</code> | <code>1.0</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `overwrite_output_dir`: True
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 8
- `num_train_epochs`: 2.0
- `warmup_ratio`: 0.2
- `push_to_hub`: True
- `hub_model_id`: CocoRoF/ModernBERT-SimCSE-multitask_v05
- `hub_strategy`: checkpoint
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: True
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 8
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2.0
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.2
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: CocoRoF/ModernBERT-SimCSE-multitask_v05
- `hub_strategy`: checkpoint
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | Validation Loss | sts_dev_spearman_max |
|:------:|:----:|:-------------:|:---------------:|:--------------------:|
| 0.0028 | 10 | 0.0202 | - | - |
| 0.0057 | 20 | 0.0184 | - | - |
| 0.0085 | 30 | 0.018 | - | - |
| 0.0114 | 40 | 0.0173 | - | - |
| 0.0142 | 50 | 0.0193 | - | - |
| 0.0171 | 60 | 0.0158 | - | - |
| 0.0199 | 70 | 0.016 | - | - |
| 0.0228 | 80 | 0.0139 | - | - |
| 0.0256 | 90 | 0.0143 | - | - |
| 0.0285 | 100 | 0.0138 | - | - |
| 0.0313 | 110 | 0.0127 | - | - |
| 0.0341 | 120 | 0.0115 | - | - |
| 0.0370 | 130 | 0.0117 | - | - |
| 0.0398 | 140 | 0.0111 | - | - |
| 0.0427 | 150 | 0.0111 | - | - |
| 0.0455 | 160 | 0.0106 | - | - |
| 0.0484 | 170 | 0.01 | - | - |
| 0.0512 | 180 | 0.0103 | - | - |
| 0.0541 | 190 | 0.0106 | - | - |
| 0.0569 | 200 | 0.0102 | - | - |
| 0.0597 | 210 | 0.0103 | - | - |
| 0.0626 | 220 | 0.0109 | - | - |
| 0.0654 | 230 | 0.0099 | - | - |
| 0.0683 | 240 | 0.0086 | - | - |
| 0.0711 | 250 | 0.01 | 0.0448 | 0.7642 |
| 0.0740 | 260 | 0.0098 | - | - |
| 0.0768 | 270 | 0.0094 | - | - |
| 0.0797 | 280 | 0.0097 | - | - |
| 0.0825 | 290 | 0.0094 | - | - |
| 0.0854 | 300 | 0.0095 | - | - |
| 0.0882 | 310 | 0.0098 | - | - |
| 0.0910 | 320 | 0.0092 | - | - |
| 0.0939 | 330 | 0.0095 | - | - |
| 0.0967 | 340 | 0.0103 | - | - |
| 0.0996 | 350 | 0.0097 | - | - |
| 0.1024 | 360 | 0.0091 | - | - |
| 0.1053 | 370 | 0.0094 | - | - |
| 0.1081 | 380 | 0.0088 | - | - |
| 0.1110 | 390 | 0.009 | - | - |
| 0.1138 | 400 | 0.0098 | - | - |
| 0.1166 | 410 | 0.0083 | - | - |
| 0.1195 | 420 | 0.0099 | - | - |
| 0.1223 | 430 | 0.0094 | - | - |
| 0.1252 | 440 | 0.0092 | - | - |
| 0.1280 | 450 | 0.009 | - | - |
| 0.1309 | 460 | 0.0088 | - | - |
| 0.1337 | 470 | 0.0092 | - | - |
| 0.1366 | 480 | 0.0083 | - | - |
| 0.1394 | 490 | 0.0089 | - | - |
| 0.1423 | 500 | 0.0089 | 0.0444 | 0.7725 |
| 0.1451 | 510 | 0.0095 | - | - |
| 0.1479 | 520 | 0.0095 | - | - |
| 0.1508 | 530 | 0.0091 | - | - |
| 0.1536 | 540 | 0.0082 | - | - |
| 0.1565 | 550 | 0.0091 | - | - |
| 0.1593 | 560 | 0.0086 | - | - |
| 0.1622 | 570 | 0.009 | - | - |
| 0.1650 | 580 | 0.0088 | - | - |
| 0.1679 | 590 | 0.0087 | - | - |
| 0.1707 | 600 | 0.0089 | - | - |
| 0.1735 | 610 | 0.009 | - | - |
| 0.1764 | 620 | 0.0088 | - | - |
| 0.1792 | 630 | 0.0088 | - | - |
| 0.1821 | 640 | 0.0081 | - | - |
| 0.1849 | 650 | 0.0082 | - | - |
| 0.1878 | 660 | 0.0088 | - | - |
| 0.1906 | 670 | 0.0086 | - | - |
| 0.1935 | 680 | 0.0085 | - | - |
| 0.1963 | 690 | 0.009 | - | - |
| 0.1992 | 700 | 0.0083 | - | - |
| 0.2020 | 710 | 0.0088 | - | - |
| 0.2048 | 720 | 0.0088 | - | - |
| 0.2077 | 730 | 0.0087 | - | - |
| 0.2105 | 740 | 0.0088 | - | - |
| 0.2134 | 750 | 0.008 | 0.0465 | 0.7798 |
| 0.2162 | 760 | 0.0087 | - | - |
| 0.2191 | 770 | 0.0087 | - | - |
| 0.2219 | 780 | 0.009 | - | - |
| 0.2248 | 790 | 0.0085 | - | - |
| 0.2276 | 800 | 0.009 | - | - |
| 0.2304 | 810 | 0.0082 | - | - |
| 0.2333 | 820 | 0.0073 | - | - |
| 0.2361 | 830 | 0.0078 | - | - |
| 0.2390 | 840 | 0.0088 | - | - |
| 0.2418 | 850 | 0.0077 | - | - |
| 0.2447 | 860 | 0.008 | - | - |
| 0.2475 | 870 | 0.008 | - | - |
| 0.2504 | 880 | 0.0086 | - | - |
| 0.2532 | 890 | 0.0083 | - | - |
| 0.2561 | 900 | 0.0081 | - | - |
| 0.2589 | 910 | 0.0081 | - | - |
| 0.2617 | 920 | 0.0077 | - | - |
| 0.2646 | 930 | 0.0083 | - | - |
| 0.2674 | 940 | 0.0081 | - | - |
| 0.2703 | 950 | 0.0069 | - | - |
| 0.2731 | 960 | 0.0084 | - | - |
| 0.2760 | 970 | 0.0075 | - | - |
| 0.2788 | 980 | 0.0081 | - | - |
| 0.2817 | 990 | 0.0086 | - | - |
| 0.2845 | 1000 | 0.0079 | 0.0473 | 0.7855 |
| 0.2874 | 1010 | 0.0088 | - | - |
| 0.2902 | 1020 | 0.0073 | - | - |
| 0.2930 | 1030 | 0.008 | - | - |
| 0.2959 | 1040 | 0.0073 | - | - |
| 0.2987 | 1050 | 0.008 | - | - |
| 0.3016 | 1060 | 0.0074 | - | - |
| 0.3044 | 1070 | 0.007 | - | - |
| 0.3073 | 1080 | 0.0075 | - | - |
| 0.3101 | 1090 | 0.0077 | - | - |
| 0.3130 | 1100 | 0.0076 | - | - |
| 0.3158 | 1110 | 0.0082 | - | - |
| 0.3186 | 1120 | 0.0073 | - | - |
| 0.3215 | 1130 | 0.007 | - | - |
| 0.3243 | 1140 | 0.0077 | - | - |
| 0.3272 | 1150 | 0.0074 | - | - |
| 0.3300 | 1160 | 0.0076 | - | - |
| 0.3329 | 1170 | 0.0078 | - | - |
| 0.3357 | 1180 | 0.0073 | - | - |
| 0.3386 | 1190 | 0.0077 | - | - |
| 0.3414 | 1200 | 0.0068 | - | - |
| 0.3443 | 1210 | 0.0079 | - | - |
| 0.3471 | 1220 | 0.0073 | - | - |
| 0.3499 | 1230 | 0.0075 | - | - |
| 0.3528 | 1240 | 0.0078 | - | - |
| 0.3556 | 1250 | 0.0073 | 0.0472 | 0.7855 |
| 0.3585 | 1260 | 0.0073 | - | - |
| 0.3613 | 1270 | 0.007 | - | - |
| 0.3642 | 1280 | 0.0068 | - | - |
| 0.3670 | 1290 | 0.0067 | - | - |
| 0.3699 | 1300 | 0.0078 | - | - |
| 0.3727 | 1310 | 0.0072 | - | - |
| 0.3755 | 1320 | 0.0071 | - | - |
| 0.3784 | 1330 | 0.0068 | - | - |
| 0.3812 | 1340 | 0.0068 | - | - |
| 0.3841 | 1350 | 0.0074 | - | - |
| 0.3869 | 1360 | 0.0074 | - | - |
| 0.3898 | 1370 | 0.0077 | - | - |
| 0.3926 | 1380 | 0.0069 | - | - |
| 0.3955 | 1390 | 0.0079 | - | - |
| 0.3983 | 1400 | 0.0066 | - | - |
| 0.4012 | 1410 | 0.008 | - | - |
| 0.4040 | 1420 | 0.008 | - | - |
| 0.4068 | 1430 | 0.0071 | - | - |
| 0.4097 | 1440 | 0.0066 | - | - |
| 0.4125 | 1450 | 0.0079 | - | - |
| 0.4154 | 1460 | 0.0075 | - | - |
| 0.4182 | 1470 | 0.0066 | - | - |
| 0.4211 | 1480 | 0.007 | - | - |
| 0.4239 | 1490 | 0.0066 | - | - |
| 0.4268 | 1500 | 0.0066 | 0.0474 | 0.7908 |
| 0.4296 | 1510 | 0.0075 | - | - |
| 0.4324 | 1520 | 0.0072 | - | - |
| 0.4353 | 1530 | 0.0072 | - | - |
| 0.4381 | 1540 | 0.0067 | - | - |
| 0.4410 | 1550 | 0.0073 | - | - |
| 0.4438 | 1560 | 0.0066 | - | - |
| 0.4467 | 1570 | 0.0063 | - | - |
| 0.4495 | 1580 | 0.0074 | - | - |
| 0.4524 | 1590 | 0.0075 | - | - |
| 0.4552 | 1600 | 0.0069 | - | - |
| 0.4581 | 1610 | 0.0065 | - | - |
| 0.4609 | 1620 | 0.007 | - | - |
| 0.4637 | 1630 | 0.0067 | - | - |
| 0.4666 | 1640 | 0.0067 | - | - |
| 0.4694 | 1650 | 0.0072 | - | - |
| 0.4723 | 1660 | 0.007 | - | - |
| 0.4751 | 1670 | 0.0078 | - | - |
| 0.4780 | 1680 | 0.0069 | - | - |
| 0.4808 | 1690 | 0.0067 | - | - |
| 0.4837 | 1700 | 0.0072 | - | - |
| 0.4865 | 1710 | 0.0071 | - | - |
| 0.4893 | 1720 | 0.0069 | - | - |
| 0.4922 | 1730 | 0.0074 | - | - |
| 0.4950 | 1740 | 0.0073 | - | - |
| 0.4979 | 1750 | 0.0064 | 0.0499 | 0.7938 |
| 0.5007 | 1760 | 0.0064 | - | - |
| 0.5036 | 1770 | 0.0068 | - | - |
| 0.5064 | 1780 | 0.007 | - | - |
| 0.5093 | 1790 | 0.0065 | - | - |
| 0.5121 | 1800 | 0.0073 | - | - |
| 0.5150 | 1810 | 0.0061 | - | - |
| 0.5178 | 1820 | 0.0071 | - | - |
| 0.5206 | 1830 | 0.0058 | - | - |
| 0.5235 | 1840 | 0.0065 | - | - |
| 0.5263 | 1850 | 0.0067 | - | - |
| 0.5292 | 1860 | 0.0063 | - | - |
| 0.5320 | 1870 | 0.007 | - | - |
| 0.5349 | 1880 | 0.0069 | - | - |
| 0.5377 | 1890 | 0.0073 | - | - |
| 0.5406 | 1900 | 0.0067 | - | - |
| 0.5434 | 1910 | 0.0068 | - | - |
| 0.5462 | 1920 | 0.0066 | - | - |
| 0.5491 | 1930 | 0.007 | - | - |
| 0.5519 | 1940 | 0.006 | - | - |
| 0.5548 | 1950 | 0.0062 | - | - |
| 0.5576 | 1960 | 0.0062 | - | - |
| 0.5605 | 1970 | 0.0067 | - | - |
| 0.5633 | 1980 | 0.0063 | - | - |
| 0.5662 | 1990 | 0.006 | - | - |
| 0.5690 | 2000 | 0.0067 | 0.0478 | 0.7943 |
| 0.5719 | 2010 | 0.0076 | - | - |
| 0.5747 | 2020 | 0.0069 | - | - |
| 0.5775 | 2030 | 0.0065 | - | - |
| 0.5804 | 2040 | 0.007 | - | - |
| 0.5832 | 2050 | 0.006 | - | - |
| 0.5861 | 2060 | 0.0064 | - | - |
| 0.5889 | 2070 | 0.0063 | - | - |
| 0.5918 | 2080 | 0.0067 | - | - |
| 0.5946 | 2090 | 0.0064 | - | - |
| 0.5975 | 2100 | 0.0062 | - | - |
| 0.6003 | 2110 | 0.0063 | - | - |
| 0.6032 | 2120 | 0.0063 | - | - |
| 0.6060 | 2130 | 0.0074 | - | - |
| 0.6088 | 2140 | 0.0067 | - | - |
| 0.6117 | 2150 | 0.006 | - | - |
| 0.6145 | 2160 | 0.0062 | - | - |
| 0.6174 | 2170 | 0.007 | - | - |
| 0.6202 | 2180 | 0.0069 | - | - |
| 0.6231 | 2190 | 0.007 | - | - |
| 0.6259 | 2200 | 0.0065 | - | - |
| 0.6288 | 2210 | 0.0071 | - | - |
| 0.6316 | 2220 | 0.007 | - | - |
| 0.6344 | 2230 | 0.0064 | - | - |
| 0.6373 | 2240 | 0.0061 | - | - |
| 0.6401 | 2250 | 0.0062 | 0.0464 | 0.7935 |
| 0.6430 | 2260 | 0.0069 | - | - |
| 0.6458 | 2270 | 0.0062 | - | - |
| 0.6487 | 2280 | 0.0063 | - | - |
| 0.6515 | 2290 | 0.0063 | - | - |
| 0.6544 | 2300 | 0.006 | - | - |
| 0.6572 | 2310 | 0.0064 | - | - |
| 0.6601 | 2320 | 0.0061 | - | - |
| 0.6629 | 2330 | 0.0065 | - | - |
| 0.6657 | 2340 | 0.0061 | - | - |
| 0.6686 | 2350 | 0.0067 | - | - |
| 0.6714 | 2360 | 0.0066 | - | - |
| 0.6743 | 2370 | 0.0068 | - | - |
| 0.6771 | 2380 | 0.0071 | - | - |
| 0.6800 | 2390 | 0.0064 | - | - |
| 0.6828 | 2400 | 0.0064 | - | - |
| 0.6857 | 2410 | 0.0064 | - | - |
| 0.6885 | 2420 | 0.0064 | - | - |
| 0.6913 | 2430 | 0.0062 | - | - |
| 0.6942 | 2440 | 0.0067 | - | - |
| 0.6970 | 2450 | 0.0062 | - | - |
| 0.6999 | 2460 | 0.0059 | - | - |
| 0.7027 | 2470 | 0.0063 | - | - |
| 0.7056 | 2480 | 0.0055 | - | - |
| 0.7084 | 2490 | 0.0074 | - | - |
| 0.7113 | 2500 | 0.0064 | 0.0488 | 0.7939 |
| 0.7141 | 2510 | 0.006 | - | - |
| 0.7170 | 2520 | 0.0061 | - | - |
| 0.7198 | 2530 | 0.0064 | - | - |
| 0.7226 | 2540 | 0.0059 | - | - |
| 0.7255 | 2550 | 0.0064 | - | - |
| 0.7283 | 2560 | 0.0061 | - | - |
| 0.7312 | 2570 | 0.0062 | - | - |
| 0.7340 | 2580 | 0.0068 | - | - |
| 0.7369 | 2590 | 0.0061 | - | - |
| 0.7397 | 2600 | 0.0065 | - | - |
| 0.7426 | 2610 | 0.0055 | - | - |
| 0.7454 | 2620 | 0.0057 | - | - |
| 0.7482 | 2630 | 0.0064 | - | - |
| 0.7511 | 2640 | 0.0056 | - | - |
| 0.7539 | 2650 | 0.0059 | - | - |
| 0.7568 | 2660 | 0.0059 | - | - |
| 0.7596 | 2670 | 0.0064 | - | - |
| 0.7625 | 2680 | 0.0067 | - | - |
| 0.7653 | 2690 | 0.0062 | - | - |
| 0.7682 | 2700 | 0.0056 | - | - |
| 0.7710 | 2710 | 0.0063 | - | - |
| 0.7739 | 2720 | 0.0064 | - | - |
| 0.7767 | 2730 | 0.0063 | - | - |
| 0.7795 | 2740 | 0.0062 | - | - |
| 0.7824 | 2750 | 0.0058 | 0.0479 | 0.7987 |
| 0.7852 | 2760 | 0.0063 | - | - |
| 0.7881 | 2770 | 0.0061 | - | - |
| 0.7909 | 2780 | 0.0059 | - | - |
| 0.7938 | 2790 | 0.0061 | - | - |
| 0.7966 | 2800 | 0.0059 | - | - |
| 0.7995 | 2810 | 0.0058 | - | - |
| 0.8023 | 2820 | 0.0057 | - | - |
| 0.8051 | 2830 | 0.0059 | - | - |
| 0.8080 | 2840 | 0.0058 | - | - |
| 0.8108 | 2850 | 0.0068 | - | - |
| 0.8137 | 2860 | 0.006 | - | - |
| 0.8165 | 2870 | 0.0058 | - | - |
| 0.8194 | 2880 | 0.0061 | - | - |
| 0.8222 | 2890 | 0.0058 | - | - |
| 0.8251 | 2900 | 0.0055 | - | - |
| 0.8279 | 2910 | 0.006 | - | - |
| 0.8308 | 2920 | 0.0063 | - | - |
| 0.8336 | 2930 | 0.0066 | - | - |
| 0.8364 | 2940 | 0.0059 | - | - |
| 0.8393 | 2950 | 0.0056 | - | - |
| 0.8421 | 2960 | 0.006 | - | - |
| 0.8450 | 2970 | 0.0058 | - | - |
| 0.8478 | 2980 | 0.006 | - | - |
| 0.8507 | 2990 | 0.0056 | - | - |
| 0.8535 | 3000 | 0.0062 | 0.0511 | 0.7996 |
| 0.8564 | 3010 | 0.0059 | - | - |
| 0.8592 | 3020 | 0.0064 | - | - |
| 0.8621 | 3030 | 0.0064 | - | - |
| 0.8649 | 3040 | 0.006 | - | - |
| 0.8677 | 3050 | 0.0059 | - | - |
| 0.8706 | 3060 | 0.0055 | - | - |
| 0.8734 | 3070 | 0.0056 | - | - |
| 0.8763 | 3080 | 0.0058 | - | - |
| 0.8791 | 3090 | 0.0057 | - | - |
| 0.8820 | 3100 | 0.0058 | - | - |
| 0.8848 | 3110 | 0.0062 | - | - |
| 0.8877 | 3120 | 0.0058 | - | - |
| 0.8905 | 3130 | 0.0058 | - | - |
| 0.8933 | 3140 | 0.0055 | - | - |
| 0.8962 | 3150 | 0.0056 | - | - |
| 0.8990 | 3160 | 0.0055 | - | - |
| 0.9019 | 3170 | 0.0054 | - | - |
| 0.9047 | 3180 | 0.0059 | - | - |
| 0.9076 | 3190 | 0.0056 | - | - |
| 0.9104 | 3200 | 0.0057 | - | - |
| 0.9133 | 3210 | 0.0055 | - | - |
| 0.9161 | 3220 | 0.0061 | - | - |
| 0.9190 | 3230 | 0.0055 | - | - |
| 0.9218 | 3240 | 0.0062 | - | - |
| 0.9246 | 3250 | 0.006 | 0.0508 | 0.7989 |
| 0.9275 | 3260 | 0.0058 | - | - |
| 0.9303 | 3270 | 0.0053 | - | - |
| 0.9332 | 3280 | 0.0064 | - | - |
| 0.9360 | 3290 | 0.006 | - | - |
| 0.9389 | 3300 | 0.0057 | - | - |
| 0.9417 | 3310 | 0.0059 | - | - |
| 0.9446 | 3320 | 0.0057 | - | - |
| 0.9474 | 3330 | 0.0056 | - | - |
| 0.9502 | 3340 | 0.0056 | - | - |
| 0.9531 | 3350 | 0.0061 | - | - |
| 0.9559 | 3360 | 0.0053 | - | - |
| 0.9588 | 3370 | 0.0056 | - | - |
| 0.9616 | 3380 | 0.006 | - | - |
| 0.9645 | 3390 | 0.0066 | - | - |
| 0.9673 | 3400 | 0.0062 | - | - |
| 0.9702 | 3410 | 0.0053 | - | - |
| 0.9730 | 3420 | 0.0062 | - | - |
| 0.9759 | 3430 | 0.0057 | - | - |
| 0.9787 | 3440 | 0.0059 | - | - |
| 0.9815 | 3450 | 0.0061 | - | - |
| 0.9844 | 3460 | 0.0057 | - | - |
| 0.9872 | 3470 | 0.0054 | - | - |
| 0.9901 | 3480 | 0.0054 | - | - |
| 0.9929 | 3490 | 0.0057 | - | - |
| 0.9958 | 3500 | 0.0056 | 0.0485 | 0.7958 |
| 0.9986 | 3510 | 0.0053 | - | - |
| 1.0014 | 3520 | 0.0054 | - | - |
| 1.0043 | 3530 | 0.0056 | - | - |
| 1.0071 | 3540 | 0.0055 | - | - |
| 1.0100 | 3550 | 0.0055 | - | - |
| 1.0128 | 3560 | 0.0056 | - | - |
| 1.0156 | 3570 | 0.0058 | - | - |
| 1.0185 | 3580 | 0.0055 | - | - |
| 1.0213 | 3590 | 0.0058 | - | - |
| 1.0242 | 3600 | 0.0058 | - | - |
| 1.0270 | 3610 | 0.0061 | - | - |
| 1.0299 | 3620 | 0.006 | - | - |
| 1.0327 | 3630 | 0.0057 | - | - |
| 1.0356 | 3640 | 0.0054 | - | - |
| 1.0384 | 3650 | 0.0059 | - | - |
| 1.0413 | 3660 | 0.0057 | - | - |
| 1.0441 | 3670 | 0.0057 | - | - |
| 1.0469 | 3680 | 0.0057 | - | - |
| 1.0498 | 3690 | 0.0055 | - | - |
| 1.0526 | 3700 | 0.0057 | - | - |
| 1.0555 | 3710 | 0.0057 | - | - |
| 1.0583 | 3720 | 0.0056 | - | - |
| 1.0612 | 3730 | 0.0057 | - | - |
| 1.0640 | 3740 | 0.005 | - | - |
| 1.0669 | 3750 | 0.0051 | 0.0525 | 0.7979 |
| 1.0697 | 3760 | 0.0052 | - | - |
| 1.0725 | 3770 | 0.0055 | - | - |
| 1.0754 | 3780 | 0.005 | - | - |
| 1.0782 | 3790 | 0.0056 | - | - |
| 1.0811 | 3800 | 0.0054 | - | - |
| 1.0839 | 3810 | 0.0054 | - | - |
| 1.0868 | 3820 | 0.0058 | - | - |
| 1.0896 | 3830 | 0.0049 | - | - |
| 1.0925 | 3840 | 0.0053 | - | - |
| 1.0953 | 3850 | 0.0055 | - | - |
| 1.0982 | 3860 | 0.0057 | - | - |
| 1.1010 | 3870 | 0.0059 | - | - |
| 1.1038 | 3880 | 0.0049 | - | - |
| 1.1067 | 3890 | 0.0051 | - | - |
| 1.1095 | 3900 | 0.0051 | - | - |
| 1.1124 | 3910 | 0.0054 | - | - |
| 1.1152 | 3920 | 0.0051 | - | - |
| 1.1181 | 3930 | 0.0052 | - | - |
| 1.1209 | 3940 | 0.0051 | - | - |
| 1.1238 | 3950 | 0.0055 | - | - |
| 1.1266 | 3960 | 0.0052 | - | - |
| 1.1294 | 3970 | 0.0049 | - | - |
| 1.1323 | 3980 | 0.0054 | - | - |
| 1.1351 | 3990 | 0.0053 | - | - |
| 1.1380 | 4000 | 0.0046 | 0.0475 | 0.8005 |
| 1.1408 | 4010 | 0.0049 | - | - |
| 1.1437 | 4020 | 0.0054 | - | - |
| 1.1465 | 4030 | 0.0054 | - | - |
| 1.1494 | 4040 | 0.0051 | - | - |
| 1.1522 | 4050 | 0.0052 | - | - |
| 1.1551 | 4060 | 0.0052 | - | - |
| 1.1579 | 4070 | 0.0049 | - | - |
| 1.1607 | 4080 | 0.005 | - | - |
| 1.1636 | 4090 | 0.0054 | - | - |
| 1.1664 | 4100 | 0.0049 | - | - |
| 1.1693 | 4110 | 0.0054 | - | - |
| 1.1721 | 4120 | 0.0051 | - | - |
| 1.1750 | 4130 | 0.0048 | - | - |
| 1.1778 | 4140 | 0.0053 | - | - |
| 1.1807 | 4150 | 0.0051 | - | - |
| 1.1835 | 4160 | 0.0045 | - | - |
| 1.1864 | 4170 | 0.0057 | - | - |
| 1.1892 | 4180 | 0.0051 | - | - |
| 1.1920 | 4190 | 0.0051 | - | - |
| 1.1949 | 4200 | 0.0052 | - | - |
| 1.1977 | 4210 | 0.0054 | - | - |
| 1.2006 | 4220 | 0.005 | - | - |
| 1.2034 | 4230 | 0.0046 | - | - |
| 1.2063 | 4240 | 0.0051 | - | - |
| 1.2091 | 4250 | 0.0053 | 0.0470 | 0.7988 |
| 1.2120 | 4260 | 0.0051 | - | - |
| 1.2148 | 4270 | 0.0049 | - | - |
| 1.2176 | 4280 | 0.0047 | - | - |
| 1.2205 | 4290 | 0.0051 | - | - |
| 1.2233 | 4300 | 0.0047 | - | - |
| 1.2262 | 4310 | 0.005 | - | - |
| 1.2290 | 4320 | 0.0051 | - | - |
| 1.2319 | 4330 | 0.0051 | - | - |
| 1.2347 | 4340 | 0.0046 | - | - |
| 1.2376 | 4350 | 0.0052 | - | - |
| 1.2404 | 4360 | 0.0044 | - | - |
| 1.2433 | 4370 | 0.0049 | - | - |
| 1.2461 | 4380 | 0.0051 | - | - |
| 1.2489 | 4390 | 0.0052 | - | - |
| 1.2518 | 4400 | 0.0049 | - | - |
| 1.2546 | 4410 | 0.0051 | - | - |
| 1.2575 | 4420 | 0.005 | - | - |
| 1.2603 | 4430 | 0.0045 | - | - |
| 1.2632 | 4440 | 0.005 | - | - |
| 1.2660 | 4450 | 0.005 | - | - |
| 1.2689 | 4460 | 0.0044 | - | - |
| 1.2717 | 4470 | 0.0051 | - | - |
| 1.2745 | 4480 | 0.005 | - | - |
| 1.2774 | 4490 | 0.0045 | - | - |
| 1.2802 | 4500 | 0.0051 | 0.0550 | 0.8063 |
| 1.2831 | 4510 | 0.0048 | - | - |
| 1.2859 | 4520 | 0.0053 | - | - |
| 1.2888 | 4530 | 0.0045 | - | - |
| 1.2916 | 4540 | 0.0045 | - | - |
| 1.2945 | 4550 | 0.0046 | - | - |
| 1.2973 | 4560 | 0.0047 | - | - |
| 1.3002 | 4570 | 0.0049 | - | - |
| 1.3030 | 4580 | 0.0045 | - | - |
| 1.3058 | 4590 | 0.0046 | - | - |
| 1.3087 | 4600 | 0.0051 | - | - |
| 1.3115 | 4610 | 0.0048 | - | - |
| 1.3144 | 4620 | 0.0045 | - | - |
| 1.3172 | 4630 | 0.0051 | - | - |
| 1.3201 | 4640 | 0.0045 | - | - |
| 1.3229 | 4650 | 0.0047 | - | - |
| 1.3258 | 4660 | 0.0048 | - | - |
| 1.3286 | 4670 | 0.0044 | - | - |
| 1.3314 | 4680 | 0.0043 | - | - |
| 1.3343 | 4690 | 0.0048 | - | - |
| 1.3371 | 4700 | 0.0046 | - | - |
| 1.3400 | 4710 | 0.0042 | - | - |
| 1.3428 | 4720 | 0.0043 | - | - |
| 1.3457 | 4730 | 0.0048 | - | - |
| 1.3485 | 4740 | 0.005 | - | - |
| 1.3514 | 4750 | 0.0044 | 0.0447 | 0.8075 |
| 1.3542 | 4760 | 0.0045 | - | - |
| 1.3571 | 4770 | 0.0046 | - | - |
| 1.3599 | 4780 | 0.0045 | - | - |
| 1.3627 | 4790 | 0.0044 | - | - |
| 1.3656 | 4800 | 0.004 | - | - |
| 1.3684 | 4810 | 0.0044 | - | - |
| 1.3713 | 4820 | 0.0045 | - | - |
| 1.3741 | 4830 | 0.0041 | - | - |
| 1.3770 | 4840 | 0.0043 | - | - |
| 1.3798 | 4850 | 0.0042 | - | - |
| 1.3827 | 4860 | 0.0044 | - | - |
| 1.3855 | 4870 | 0.0047 | - | - |
| 1.3883 | 4880 | 0.0041 | - | - |
| 1.3912 | 4890 | 0.0045 | - | - |
| 1.3940 | 4900 | 0.0047 | - | - |
| 1.3969 | 4910 | 0.0042 | - | - |
| 1.3997 | 4920 | 0.0047 | - | - |
| 1.4026 | 4930 | 0.0045 | - | - |
| 1.4054 | 4940 | 0.0048 | - | - |
| 1.4083 | 4950 | 0.0042 | - | - |
| 1.4111 | 4960 | 0.0043 | - | - |
| 1.4140 | 4970 | 0.0046 | - | - |
| 1.4168 | 4980 | 0.0046 | - | - |
| 1.4196 | 4990 | 0.0041 | - | - |
| 1.4225 | 5000 | 0.0044 | 0.0551 | 0.8041 |
| 1.4253 | 5010 | 0.0043 | - | - |
| 1.4282 | 5020 | 0.0045 | - | - |
| 1.4310 | 5030 | 0.0047 | - | - |
| 1.4339 | 5040 | 0.0046 | - | - |
| 1.4367 | 5050 | 0.0048 | - | - |
| 1.4396 | 5060 | 0.0046 | - | - |
| 1.4424 | 5070 | 0.0044 | - | - |
| 1.4453 | 5080 | 0.0039 | - | - |
| 1.4481 | 5090 | 0.0042 | - | - |
| 1.4509 | 5100 | 0.0044 | - | - |
| 1.4538 | 5110 | 0.0043 | - | - |
| 1.4566 | 5120 | 0.0043 | - | - |
| 1.4595 | 5130 | 0.0042 | - | - |
| 1.4623 | 5140 | 0.0046 | - | - |
| 1.4652 | 5150 | 0.0043 | - | - |
| 1.4680 | 5160 | 0.0043 | - | - |
| 1.4709 | 5170 | 0.0046 | - | - |
| 1.4737 | 5180 | 0.0045 | - | - |
| 1.4765 | 5190 | 0.0045 | - | - |
| 1.4794 | 5200 | 0.0041 | - | - |
| 1.4822 | 5210 | 0.0044 | - | - |
| 1.4851 | 5220 | 0.0045 | - | - |
| 1.4879 | 5230 | 0.0043 | - | - |
| 1.4908 | 5240 | 0.0043 | - | - |
| 1.4936 | 5250 | 0.0047 | 0.0529 | 0.8067 |
| 1.4965 | 5260 | 0.0042 | - | - |
| 1.4993 | 5270 | 0.0042 | - | - |
| 1.5022 | 5280 | 0.004 | - | - |
| 1.5050 | 5290 | 0.0042 | - | - |
| 1.5078 | 5300 | 0.004 | - | - |
| 1.5107 | 5310 | 0.004 | - | - |
| 1.5135 | 5320 | 0.004 | - | - |
| 1.5164 | 5330 | 0.0043 | - | - |
| 1.5192 | 5340 | 0.004 | - | - |
| 1.5221 | 5350 | 0.0041 | - | - |
| 1.5249 | 5360 | 0.0041 | - | - |
| 1.5278 | 5370 | 0.004 | - | - |
| 1.5306 | 5380 | 0.004 | - | - |
| 1.5334 | 5390 | 0.0042 | - | - |
| 1.5363 | 5400 | 0.0043 | - | - |
| 1.5391 | 5410 | 0.0044 | - | - |
| 1.5420 | 5420 | 0.0043 | - | - |
| 1.5448 | 5430 | 0.004 | - | - |
| 1.5477 | 5440 | 0.0043 | - | - |
| 1.5505 | 5450 | 0.0039 | - | - |
| 1.5534 | 5460 | 0.004 | - | - |
| 1.5562 | 5470 | 0.0038 | - | - |
| 1.5591 | 5480 | 0.0041 | - | - |
| 1.5619 | 5490 | 0.0043 | - | - |
| 1.5647 | 5500 | 0.0038 | 0.0489 | 0.8012 |
| 1.5676 | 5510 | 0.0037 | - | - |
| 1.5704 | 5520 | 0.0047 | - | - |
| 1.5733 | 5530 | 0.004 | - | - |
| 1.5761 | 5540 | 0.0043 | - | - |
| 1.5790 | 5550 | 0.0039 | - | - |
| 1.5818 | 5560 | 0.004 | - | - |
| 1.5847 | 5570 | 0.0039 | - | - |
| 1.5875 | 5580 | 0.0038 | - | - |
| 1.5903 | 5590 | 0.0042 | - | - |
| 1.5932 | 5600 | 0.004 | - | - |
| 1.5960 | 5610 | 0.0042 | - | - |
| 1.5989 | 5620 | 0.0039 | - | - |
| 1.6017 | 5630 | 0.0041 | - | - |
| 1.6046 | 5640 | 0.004 | - | - |
| 1.6074 | 5650 | 0.0042 | - | - |
| 1.6103 | 5660 | 0.004 | - | - |
| 1.6131 | 5670 | 0.0037 | - | - |
| 1.6160 | 5680 | 0.0041 | - | - |
| 1.6188 | 5690 | 0.0041 | - | - |
| 1.6216 | 5700 | 0.0039 | - | - |
| 1.6245 | 5710 | 0.0042 | - | - |
| 1.6273 | 5720 | 0.0038 | - | - |
| 1.6302 | 5730 | 0.0042 | - | - |
| 1.6330 | 5740 | 0.0037 | - | - |
| 1.6359 | 5750 | 0.0037 | 0.0494 | 0.7999 |
| 1.6387 | 5760 | 0.0037 | - | - |
| 1.6416 | 5770 | 0.0038 | - | - |
| 1.6444 | 5780 | 0.0038 | - | - |
| 1.6472 | 5790 | 0.0038 | - | - |
| 1.6501 | 5800 | 0.004 | - | - |
| 1.6529 | 5810 | 0.0038 | - | - |
| 1.6558 | 5820 | 0.004 | - | - |
| 1.6586 | 5830 | 0.0039 | - | - |
| 1.6615 | 5840 | 0.0036 | - | - |
| 1.6643 | 5850 | 0.0038 | - | - |
| 1.6672 | 5860 | 0.0036 | - | - |
| 1.6700 | 5870 | 0.004 | - | - |
| 1.6729 | 5880 | 0.004 | - | - |
| 1.6757 | 5890 | 0.004 | - | - |
| 1.6785 | 5900 | 0.0041 | - | - |
| 1.6814 | 5910 | 0.0037 | - | - |
| 1.6842 | 5920 | 0.0036 | - | - |
| 1.6871 | 5930 | 0.0037 | - | - |
| 1.6899 | 5940 | 0.0037 | - | - |
| 1.6928 | 5950 | 0.0036 | - | - |
| 1.6956 | 5960 | 0.0038 | - | - |
| 1.6985 | 5970 | 0.0034 | - | - |
| 1.7013 | 5980 | 0.0035 | - | - |
| 1.7042 | 5990 | 0.0036 | - | - |
| 1.7070 | 6000 | 0.004 | 0.0525 | 0.8026 |
| 1.7098 | 6010 | 0.0041 | - | - |
| 1.7127 | 6020 | 0.0036 | - | - |
| 1.7155 | 6030 | 0.004 | - | - |
| 1.7184 | 6040 | 0.0039 | - | - |
| 1.7212 | 6050 | 0.0036 | - | - |
| 1.7241 | 6060 | 0.0038 | - | - |
| 1.7269 | 6070 | 0.004 | - | - |
| 1.7298 | 6080 | 0.0036 | - | - |
| 1.7326 | 6090 | 0.0037 | - | - |
| 1.7354 | 6100 | 0.0039 | - | - |
| 1.7383 | 6110 | 0.0036 | - | - |
| 1.7411 | 6120 | 0.0036 | - | - |
| 1.7440 | 6130 | 0.0034 | - | - |
| 1.7468 | 6140 | 0.0038 | - | - |
| 1.7497 | 6150 | 0.0036 | - | - |
| 1.7525 | 6160 | 0.0035 | - | - |
| 1.7554 | 6170 | 0.0035 | - | - |
| 1.7582 | 6180 | 0.0038 | - | - |
| 1.7611 | 6190 | 0.0038 | - | - |
| 1.7639 | 6200 | 0.0038 | - | - |
| 1.7667 | 6210 | 0.0032 | - | - |
| 1.7696 | 6220 | 0.0036 | - | - |
| 1.7724 | 6230 | 0.0037 | - | - |
| 1.7753 | 6240 | 0.0038 | - | - |
| 1.7781 | 6250 | 0.0037 | 0.0515 | 0.7994 |
| 1.7810 | 6260 | 0.0036 | - | - |
| 1.7838 | 6270 | 0.0035 | - | - |
| 1.7867 | 6280 | 0.0039 | - | - |
| 1.7895 | 6290 | 0.0037 | - | - |
| 1.7923 | 6300 | 0.0036 | - | - |
| 1.7952 | 6310 | 0.0036 | - | - |
| 1.7980 | 6320 | 0.0037 | - | - |
| 1.8009 | 6330 | 0.0033 | - | - |
| 1.8037 | 6340 | 0.0033 | - | - |
| 1.8066 | 6350 | 0.0035 | - | - |
| 1.8094 | 6360 | 0.0034 | - | - |
| 1.8123 | 6370 | 0.0038 | - | - |
| 1.8151 | 6380 | 0.0035 | - | - |
| 1.8180 | 6390 | 0.0035 | - | - |
| 1.8208 | 6400 | 0.0036 | - | - |
| 1.8236 | 6410 | 0.0034 | - | - |
| 1.8265 | 6420 | 0.0033 | - | - |
| 1.8293 | 6430 | 0.0038 | - | - |
| 1.8322 | 6440 | 0.0036 | - | - |
| 1.8350 | 6450 | 0.0037 | - | - |
| 1.8379 | 6460 | 0.0034 | - | - |
| 1.8407 | 6470 | 0.0034 | - | - |
| 1.8436 | 6480 | 0.0036 | - | - |
| 1.8464 | 6490 | 0.0037 | - | - |
| 1.8492 | 6500 | 0.0031 | 0.0532 | 0.8034 |
| 1.8521 | 6510 | 0.0035 | - | - |
| 1.8549 | 6520 | 0.0036 | - | - |
| 1.8578 | 6530 | 0.0037 | - | - |
| 1.8606 | 6540 | 0.0038 | - | - |
| 1.8635 | 6550 | 0.0035 | - | - |
| 1.8663 | 6560 | 0.0037 | - | - |
| 1.8692 | 6570 | 0.0032 | - | - |
| 1.8720 | 6580 | 0.0037 | - | - |
| 1.8749 | 6590 | 0.0034 | - | - |
| 1.8777 | 6600 | 0.0032 | - | - |
| 1.8805 | 6610 | 0.0033 | - | - |
| 1.8834 | 6620 | 0.0035 | - | - |
| 1.8862 | 6630 | 0.0034 | - | - |
| 1.8891 | 6640 | 0.0032 | - | - |
| 1.8919 | 6650 | 0.0036 | - | - |
| 1.8948 | 6660 | 0.0032 | - | - |
| 1.8976 | 6670 | 0.0032 | - | - |
| 1.9005 | 6680 | 0.003 | - | - |
| 1.9033 | 6690 | 0.0032 | - | - |
| 1.9061 | 6700 | 0.0034 | - | - |
| 1.9090 | 6710 | 0.0034 | - | - |
| 1.9118 | 6720 | 0.0032 | - | - |
| 1.9147 | 6730 | 0.0036 | - | - |
| 1.9175 | 6740 | 0.0036 | - | - |
| 1.9204 | 6750 | 0.0034 | 0.0494 | 0.8002 |
| 1.9232 | 6760 | 0.0036 | - | - |
| 1.9261 | 6770 | 0.0034 | - | - |
| 1.9289 | 6780 | 0.0032 | - | - |
| 1.9318 | 6790 | 0.0032 | - | - |
| 1.9346 | 6800 | 0.0036 | - | - |
| 1.9374 | 6810 | 0.0032 | - | - |
| 1.9403 | 6820 | 0.0033 | - | - |
| 1.9431 | 6830 | 0.0031 | - | - |
| 1.9460 | 6840 | 0.0034 | - | - |
| 1.9488 | 6850 | 0.0033 | - | - |
| 1.9517 | 6860 | 0.0033 | - | - |
| 1.9545 | 6870 | 0.003 | - | - |
| 1.9574 | 6880 | 0.0031 | - | - |
| 1.9602 | 6890 | 0.0035 | - | - |
| 1.9630 | 6900 | 0.0033 | - | - |
| 1.9659 | 6910 | 0.0034 | - | - |
| 1.9687 | 6920 | 0.0033 | - | - |
| 1.9716 | 6930 | 0.003 | - | - |
| 1.9744 | 6940 | 0.0034 | - | - |
| 1.9773 | 6950 | 0.0032 | - | - |
| 1.9801 | 6960 | 0.0031 | - | - |
| 1.9830 | 6970 | 0.0033 | - | - |
| 1.9858 | 6980 | 0.0032 | - | - |
| 1.9887 | 6990 | 0.0031 | - | - |
| 1.9915 | 7000 | 0.0033 | 0.0492 | 0.8008 |
| 1.9943 | 7010 | 0.0033 | - | - |
| 1.9972 | 7020 | 0.0031 | - | - |
</details>
### Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0.dev0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.0
- Datasets: 3.1.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |