DongfuJiang commited on
Commit
d3e229f
·
verified ·
1 Parent(s): e373b3e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -101
README.md CHANGED
@@ -1,103 +1,3 @@
1
  ```python
2
- from openrlhf.models.model import get_llm_for_sequence_regression
3
- from transformers import AutoTokenizer
4
- from typing import List
5
- import torch
6
- import regex as re
7
- def strip_sequence(text, pad_token, eos_token):
8
- pad_token_escaped = re.escape(pad_token)
9
- eos_token_escaped = re.escape(eos_token)
10
-
11
- pattern = f"^({eos_token_escaped}|{pad_token_escaped})+"
12
- text = re.sub(pattern, "", text)
13
-
14
- pattern = f"({eos_token_escaped}|{pad_token_escaped})+$"
15
- text = re.sub(pattern, "", text)
16
- return text
17
-
18
- class RewardModelProxy:
19
- def __init__(
20
- self,
21
- reward_pretrain:str,
22
- max_len:int,
23
- batch_size:int,
24
- normalize_reward:bool=False,
25
- flash_attn:bool=True,
26
- bf16:bool=True,
27
- load_in_4bit:bool=False,
28
- value_head_prefix:str="score",
29
- disable_fast_tokenizer:bool=False,
30
- ):
31
-
32
- self.reward_model = get_llm_for_sequence_regression(
33
- reward_pretrain,
34
- "reward",
35
- normalize_reward=normalize_reward,
36
- use_flash_attention_2=flash_attn,
37
- bf16=bf16,
38
- load_in_4bit=load_in_4bit,
39
- value_head_prefix=value_head_prefix,
40
- device_map="cuda:5",
41
- )
42
- self.reward_model.eval()
43
-
44
- self.tokenizer = AutoTokenizer.from_pretrained(reward_pretrain, trust_remote_code=True, use_fast=not disable_fast_tokenizer)
45
- self.max_length = max_len
46
- self.batch_size = batch_size
47
-
48
- def get_reward(self, conversations:List[List[dict]]):
49
- if self.batch_size is None:
50
- batch_size = len(conversations)
51
- else:
52
- batch_size = self.batch_size
53
-
54
- queries = []
55
- for conversation in conversations:
56
- query = self.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=False)
57
- queries.append(query)
58
-
59
- # remove pad_token
60
- for i in range(len(queries)):
61
- queries[i] = (
62
- strip_sequence(queries[i], self.tokenizer.pad_token, self.tokenizer.eos_token)
63
- + self.tokenizer.eos_token
64
- )
65
-
66
- scores = []
67
- # batch
68
- with torch.no_grad():
69
- for i in range(0, len(queries), batch_size):
70
- inputs = self.tokenize_fn(
71
- queries[i : min(len(queries), i + batch_size)], device=self.reward_model.device
72
- )
73
- r = self.reward_model(inputs["input_ids"], inputs["attention_mask"])
74
- r = r.tolist()
75
- scores.extend(r)
76
- return scores
77
-
78
- def tokenize_fn(self, texts, device):
79
- batch = self.tokenizer(
80
- texts,
81
- return_tensors="pt",
82
- add_special_tokens=False,
83
- max_length=self.max_length,
84
- padding=True,
85
- truncation=True,
86
- )
87
- return {k: v.to(device) for k, v in batch.items()}
88
-
89
- def __call__(self, conversations:List[List[dict]]):
90
- return self.get_reward(conversations)
91
-
92
- RM = RewardModelProxy(
93
- "CodeDPO/Qwen2.5-Coder-7B_with_margin_scalebt",
94
- max_len=2048,
95
- batch_size=8,
96
- )
97
- conversations = [
98
- [
99
- {"role": "system", "content": "Hello, how can I help you today?"},
100
- {"role": "user", "content": "I want to book a flight."},
101
- ],
102
- ]
103
  ```
 
1
  ```python
2
+ https://huggingface.co/CodeDPO/Qwen2.5-Coder-7B-binarized
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ```