Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
```python
|
2 |
+
from openrlhf.models.model import get_llm_for_sequence_regression
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
from typing import List
|
5 |
+
import torch
|
6 |
+
import regex as re
|
7 |
+
def strip_sequence(text, pad_token, eos_token):
|
8 |
+
pad_token_escaped = re.escape(pad_token)
|
9 |
+
eos_token_escaped = re.escape(eos_token)
|
10 |
+
|
11 |
+
pattern = f"^({eos_token_escaped}|{pad_token_escaped})+"
|
12 |
+
text = re.sub(pattern, "", text)
|
13 |
+
|
14 |
+
pattern = f"({eos_token_escaped}|{pad_token_escaped})+$"
|
15 |
+
text = re.sub(pattern, "", text)
|
16 |
+
return text
|
17 |
+
|
18 |
+
class RewardModelProxy:
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
reward_pretrain:str,
|
22 |
+
max_len:int,
|
23 |
+
batch_size:int,
|
24 |
+
normalize_reward:bool=False,
|
25 |
+
flash_attn:bool=True,
|
26 |
+
bf16:bool=True,
|
27 |
+
load_in_4bit:bool=False,
|
28 |
+
value_head_prefix:str="score",
|
29 |
+
disable_fast_tokenizer:bool=False,
|
30 |
+
):
|
31 |
+
|
32 |
+
self.reward_model = get_llm_for_sequence_regression(
|
33 |
+
reward_pretrain,
|
34 |
+
"reward",
|
35 |
+
normalize_reward=normalize_reward,
|
36 |
+
use_flash_attention_2=flash_attn,
|
37 |
+
bf16=bf16,
|
38 |
+
load_in_4bit=load_in_4bit,
|
39 |
+
value_head_prefix=value_head_prefix,
|
40 |
+
device_map="cuda:5",
|
41 |
+
)
|
42 |
+
self.reward_model.eval()
|
43 |
+
|
44 |
+
self.tokenizer = AutoTokenizer.from_pretrained(reward_pretrain, trust_remote_code=True, use_fast=not disable_fast_tokenizer)
|
45 |
+
self.max_length = max_len
|
46 |
+
self.batch_size = batch_size
|
47 |
+
|
48 |
+
def get_reward(self, conversations:List[List[dict]]):
|
49 |
+
if self.batch_size is None:
|
50 |
+
batch_size = len(conversations)
|
51 |
+
else:
|
52 |
+
batch_size = self.batch_size
|
53 |
+
|
54 |
+
queries = []
|
55 |
+
for conversation in conversations:
|
56 |
+
query = self.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=False)
|
57 |
+
queries.append(query)
|
58 |
+
|
59 |
+
# remove pad_token
|
60 |
+
for i in range(len(queries)):
|
61 |
+
queries[i] = (
|
62 |
+
strip_sequence(queries[i], self.tokenizer.pad_token, self.tokenizer.eos_token)
|
63 |
+
+ self.tokenizer.eos_token
|
64 |
+
)
|
65 |
+
|
66 |
+
scores = []
|
67 |
+
# batch
|
68 |
+
with torch.no_grad():
|
69 |
+
for i in range(0, len(queries), batch_size):
|
70 |
+
inputs = self.tokenize_fn(
|
71 |
+
queries[i : min(len(queries), i + batch_size)], device=self.reward_model.device
|
72 |
+
)
|
73 |
+
r = self.reward_model(inputs["input_ids"], inputs["attention_mask"])
|
74 |
+
r = r.tolist()
|
75 |
+
scores.extend(r)
|
76 |
+
return scores
|
77 |
+
|
78 |
+
def tokenize_fn(self, texts, device):
|
79 |
+
batch = self.tokenizer(
|
80 |
+
texts,
|
81 |
+
return_tensors="pt",
|
82 |
+
add_special_tokens=False,
|
83 |
+
max_length=self.max_length,
|
84 |
+
padding=True,
|
85 |
+
truncation=True,
|
86 |
+
)
|
87 |
+
return {k: v.to(device) for k, v in batch.items()}
|
88 |
+
|
89 |
+
def __call__(self, conversations:List[List[dict]]):
|
90 |
+
return self.get_reward(conversations)
|
91 |
+
|
92 |
+
RM = RewardModelProxy(
|
93 |
+
"CodeDPO/Qwen2.5-Coder-7B_with_margin_scalebt",
|
94 |
+
max_len=2048,
|
95 |
+
batch_size=8,
|
96 |
+
)
|
97 |
+
conversations = [
|
98 |
+
[
|
99 |
+
{"role": "system", "content": "Hello, how can I help you today?"},
|
100 |
+
{"role": "user", "content": "I want to book a flight."},
|
101 |
+
],
|
102 |
+
]
|
103 |
+
```
|