DongfuJiang commited on
Commit
f1d4f47
·
verified ·
1 Parent(s): 9962070

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -0
README.md ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ```python
2
+ from openrlhf.models.model import get_llm_for_sequence_regression
3
+ from transformers import AutoTokenizer
4
+ from typing import List
5
+ import torch
6
+ import regex as re
7
+ def strip_sequence(text, pad_token, eos_token):
8
+ pad_token_escaped = re.escape(pad_token)
9
+ eos_token_escaped = re.escape(eos_token)
10
+
11
+ pattern = f"^({eos_token_escaped}|{pad_token_escaped})+"
12
+ text = re.sub(pattern, "", text)
13
+
14
+ pattern = f"({eos_token_escaped}|{pad_token_escaped})+$"
15
+ text = re.sub(pattern, "", text)
16
+ return text
17
+
18
+ class RewardModelProxy:
19
+ def __init__(
20
+ self,
21
+ reward_pretrain:str,
22
+ max_len:int,
23
+ batch_size:int,
24
+ normalize_reward:bool=False,
25
+ flash_attn:bool=True,
26
+ bf16:bool=True,
27
+ load_in_4bit:bool=False,
28
+ value_head_prefix:str="score",
29
+ disable_fast_tokenizer:bool=False,
30
+ ):
31
+
32
+ self.reward_model = get_llm_for_sequence_regression(
33
+ reward_pretrain,
34
+ "reward",
35
+ normalize_reward=normalize_reward,
36
+ use_flash_attention_2=flash_attn,
37
+ bf16=bf16,
38
+ load_in_4bit=load_in_4bit,
39
+ value_head_prefix=value_head_prefix,
40
+ device_map="cuda:5",
41
+ )
42
+ self.reward_model.eval()
43
+
44
+ self.tokenizer = AutoTokenizer.from_pretrained(reward_pretrain, trust_remote_code=True, use_fast=not disable_fast_tokenizer)
45
+ self.max_length = max_len
46
+ self.batch_size = batch_size
47
+
48
+ def get_reward(self, conversations:List[List[dict]]):
49
+ if self.batch_size is None:
50
+ batch_size = len(conversations)
51
+ else:
52
+ batch_size = self.batch_size
53
+
54
+ queries = []
55
+ for conversation in conversations:
56
+ query = self.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=False)
57
+ queries.append(query)
58
+
59
+ # remove pad_token
60
+ for i in range(len(queries)):
61
+ queries[i] = (
62
+ strip_sequence(queries[i], self.tokenizer.pad_token, self.tokenizer.eos_token)
63
+ + self.tokenizer.eos_token
64
+ )
65
+
66
+ scores = []
67
+ # batch
68
+ with torch.no_grad():
69
+ for i in range(0, len(queries), batch_size):
70
+ inputs = self.tokenize_fn(
71
+ queries[i : min(len(queries), i + batch_size)], device=self.reward_model.device
72
+ )
73
+ r = self.reward_model(inputs["input_ids"], inputs["attention_mask"])
74
+ r = r.tolist()
75
+ scores.extend(r)
76
+ return scores
77
+
78
+ def tokenize_fn(self, texts, device):
79
+ batch = self.tokenizer(
80
+ texts,
81
+ return_tensors="pt",
82
+ add_special_tokens=False,
83
+ max_length=self.max_length,
84
+ padding=True,
85
+ truncation=True,
86
+ )
87
+ return {k: v.to(device) for k, v in batch.items()}
88
+
89
+ def __call__(self, conversations:List[List[dict]]):
90
+ return self.get_reward(conversations)
91
+
92
+ RM = RewardModelProxy(
93
+ "CodeDPO/Qwen2.5-Coder-7B_with_margin_scalebt",
94
+ max_len=2048,
95
+ batch_size=8,
96
+ )
97
+ conversations = [
98
+ [
99
+ {"role": "system", "content": "Hello, how can I help you today?"},
100
+ {"role": "user", "content": "I want to book a flight."},
101
+ ],
102
+ ]
103
+ ```