File size: 4,403 Bytes
2157f81
 
 
 
d7444f2
2157f81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7444f2
 
 
2157f81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7444f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2157f81
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
---
license: other
base_model: deepseek-ai/deepseek-coder-1.3b-base
tags:
- axolotl
- generated_from_trainer
model-index:
- name: deepseek_coder_1.3b_typescript
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.3.0`
```yaml
base_model: deepseek-ai/deepseek-coder-1.3b-base
model_type: AutoModelForCausalLM
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false


datasets:
  - path: CodeGPTPlus/typescript-0-500000-seq1024
    type: completion
    field: text
#dataset_prepared_path:

#pretraining_dataset: CodeGPTPlus/typescript-0-500000-seq1024

val_set_size: 0.001
output_dir:  ./fft-out

sequence_len: 1024

adapter:
lora_model_dir:
lora_r: 
lora_alpha: 
lora_dropout: 
lora_target_linear: 
lora_fan_in_fan_out:
lora_modules_to_save:

wandb_project: deepseek_1.3_fft
wandb_entity:
wandb_watch:
wandb_name: aws_a10g
wandb_log_model: end


gradient_accumulation_steps: 2
micro_batch_size: 20
num_epochs: 1
#max_steps: 1 # REMOVE IT
optimizer: adamw_bnb_8bit
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 0.000001
max_grad_norm: 1.0
weight_decay: 0.1
lr_scheduler: cosine
learning_rate: 0.00002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

hub_model_id: CodeGPTPlus/deepseek_coder_1.3b_typescript
hub_strategy: every_save
warmup_ratio: 0.01
evals_per_epoch: 20
saves_per_epoch: 3
debug:
deepspeed:

fsdp:
fsdp_config:
special_tokens:
  bos_token: "<|begin▁of▁sentence|>"
  eos_token: "<|end▁of▁sentence|>"
  pad_token: "<|end▁of▁sentence|>"
  # fim_prefix: "<|fim▁begin|>"
  # fim_middle: "<|fim▁hole|>"
  # fim_suffix: "<|fim▁end|>"

```

</details><br>

# deepseek_coder_1.3b_typescript

This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-base](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7681

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 20
- eval_batch_size: 20
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 40
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 261
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.0745        | 0.0   | 1     | 0.8681          |
| 1.2267        | 0.05  | 1308  | 0.8130          |
| 1.1594        | 0.1   | 2616  | 0.8018          |
| 0.7674        | 0.15  | 3924  | 0.7942          |
| 0.6443        | 0.2   | 5232  | 0.7889          |
| 0.9155        | 0.25  | 6540  | 0.7847          |
| 0.7501        | 0.3   | 7848  | 0.7819          |
| 0.8835        | 0.35  | 9156  | 0.7792          |
| 0.7261        | 0.4   | 10464 | 0.7769          |
| 0.9746        | 0.45  | 11772 | 0.7748          |
| 0.6884        | 0.5   | 13080 | 0.7734          |
| 0.6104        | 0.55  | 14388 | 0.7722          |
| 0.8876        | 0.6   | 15696 | 0.7710          |
| 0.9567        | 0.65  | 17004 | 0.7703          |
| 0.6915        | 0.7   | 18312 | 0.7696          |
| 0.8874        | 0.75  | 19620 | 0.7691          |
| 0.6124        | 0.8   | 20928 | 0.7686          |
| 0.8147        | 0.85  | 22236 | 0.7684          |
| 0.8021        | 0.9   | 23544 | 0.7683          |
| 0.8665        | 0.95  | 24852 | 0.7681          |


### Framework versions

- Transformers 4.37.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0