Update README.md
Browse files
README.md
CHANGED
@@ -5,5 +5,114 @@ datasets:
|
|
5 |
language:
|
6 |
- en
|
7 |
base_model:
|
8 |
-
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
language:
|
6 |
- en
|
7 |
base_model:
|
8 |
+
- unsloth/Llama-3.2-3B-Instruct
|
9 |
+
new_version: meta-llama/Llama-3.2-3B-Instruct
|
10 |
+
pipeline_tag: text2text-generation
|
11 |
+
tags:
|
12 |
+
- Fortran
|
13 |
+
- Rust
|
14 |
+
- FortranToRust
|
15 |
+
---
|
16 |
+
# Model Card for Model ID
|
17 |
+
|
18 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
19 |
+
|
20 |
+
This modelcard aims to be a base template for new models. It has been generated using [unsloth/Llama-3.2-3B-Instruct](https://huggingface.co/unsloth/Llama-3.2-3B-Instruct).
|
21 |
+
|
22 |
+
## Model Details
|
23 |
+
|
24 |
+
### Model Description
|
25 |
+
|
26 |
+
CodeConvLLM is a language model specifically designed to translate OCaml and Fortran code into C# and Rust. It integrates seamlessly with Visual Studio Code through a plugin and ensures industry-standard translations by benchmarking outputs against best practices in software engineering.
|
27 |
+
|
28 |
+
|
29 |
+
- **Developed by:** [Caslow Chien](https://huggingface.co/Caslow) and [Chandrahas Aroori](https://huggingface.co/charoori)
|
30 |
+
- **License:** MIT
|
31 |
+
- **Finetuned from model:** [unsloth/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct)
|
32 |
+
|
33 |
+
### Model Sources
|
34 |
+
|
35 |
+
- **Repository:** [GitHub Repo](https://github.com/CodeTranslatorLLM/LinguistLLM)
|
36 |
+
|
37 |
+
## Uses
|
38 |
+
|
39 |
+
### Direct Use
|
40 |
+
The model can be used directly for code translation tasks. Users can input OCaml or Fortran code into the Gradio dashboard or via the API and receive C# or Rust code as output. It is particularly suitable for developers needing efficient, accurate language conversion in software migration or integration projects.
|
41 |
+
|
42 |
+
### Downstream Use [optional]
|
43 |
+
Developers can integrate this model into larger IDE ecosystems, CI/CD pipelines, or automated code-refactoring systems for multi-language development projects.
|
44 |
+
|
45 |
+
### Out-of-Scope Use
|
46 |
+
The model should not be used for:
|
47 |
+
+ Translating non-code text.
|
48 |
+
+ Translating between languages it is not trained for (e.g., Python to Java).
|
49 |
+
+ Malicious purposes, such as creating obfuscated or harmful code.
|
50 |
+
+
|
51 |
+
## Bias, Risks, and Limitations
|
52 |
+
While the model achieves high accuracy in most cases, it may introduce errors in certain edge cases or highly domain-specific code. Users must verify and test generated outputs thoroughly before deployment.
|
53 |
+
|
54 |
+
### Recommendations
|
55 |
+
+ Validation: Benchmark the output using standard tools and manual review.
|
56 |
+
+ Testing: Integrate automated testing during translation workflows to catch potential bugs or inaccuracies.
|
57 |
+
|
58 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
59 |
+
|
60 |
+
## How to Get Started with the Model
|
61 |
+
|
62 |
+
Please visit the [GitHub Repo](https://github.com/CodeTranslatorLLM/LinguistLLM) for a detailed guide.
|
63 |
+
|
64 |
+
**Quick Guide**
|
65 |
+
1. Load the model
|
66 |
+
```python
|
67 |
+
from unsloth import FastLanguageModel
|
68 |
+
from transformers import TextStreamer
|
69 |
+
|
70 |
+
max_seq_length = 2048
|
71 |
+
dtype = None
|
72 |
+
load_in_4bit = True
|
73 |
+
|
74 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
75 |
+
model_name = "lora_model", # OUR MODEL YOU USED FOR TRAINING, put it under the same folder
|
76 |
+
max_seq_length = max_seq_length,
|
77 |
+
dtype = dtype,
|
78 |
+
load_in_4bit = load_in_4bit,
|
79 |
+
)
|
80 |
+
FastLanguageModel.for_inference(model)
|
81 |
+
```
|
82 |
+
|
83 |
+
2. Get your input
|
84 |
+
```python
|
85 |
+
USER_INPUT_CODE = # YOUR FORTRAN CODE
|
86 |
+
USER_INPUT_EXPLANATION = # YOUR FORTRAN CODE EXPLANATION
|
87 |
+
messages = [
|
88 |
+
{
|
89 |
+
"role": "user",
|
90 |
+
"content": str("[Fortran Code]") + str(USER_INPUT_CODE) + str("[Fortran Code Explain]" )+ str(USER_INPUT_EXPLANATION)
|
91 |
+
},
|
92 |
+
]
|
93 |
+
inputs = tokenizer.apply_chat_template(
|
94 |
+
messages,
|
95 |
+
tokenize = True,
|
96 |
+
add_generation_prompt = True, # Must add for generation
|
97 |
+
return_tensors = "pt",
|
98 |
+
).to("cuda")
|
99 |
+
```
|
100 |
+
|
101 |
+
3. Run the model
|
102 |
+
```python
|
103 |
+
text_streamer = TextStreamer(tokenizer, skip_prompt = True)
|
104 |
+
_ = model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 2000,
|
105 |
+
use_cache = True, temperature = 1.5, min_p = 0.1)
|
106 |
+
```
|
107 |
+
|
108 |
+
## Training Details
|
109 |
+
|
110 |
+
Please visit the [GitHub Repo](https://github.com/CodeTranslatorLLM/LinguistLLM) for a detailed guide.
|
111 |
+
|
112 |
+
### Training Data
|
113 |
+
|
114 |
+
Please visit the [GitHub Repo](https://github.com/CodeTranslatorLLM/LinguistLLM) for a detailed guide.
|
115 |
+
|
116 |
+
### Training Procedure
|
117 |
+
|
118 |
+
Please visit the [GitHub Repo](https://github.com/CodeTranslatorLLM/LinguistLLM) for a detailed guide.
|