Re-add tokenizer.json with LFS
Browse files- README.md +111 -2
- lora_model/adapter_config.json β adapter_config.json +0 -0
- lora_model/adapter_model.safetensors β adapter_model.safetensors +0 -0
- lora_model/README.md +0 -202
- lora_model/special_tokens_map.json β special_tokens_map.json +0 -0
- lora_model/tokenizer.json β tokenizer.json +0 -0
- lora_model/tokenizer_config.json β tokenizer_config.json +0 -0
README.md
CHANGED
@@ -5,5 +5,114 @@ datasets:
|
|
5 |
language:
|
6 |
- en
|
7 |
base_model:
|
8 |
-
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
language:
|
6 |
- en
|
7 |
base_model:
|
8 |
+
- unsloth/Llama-3.2-3B-Instruct
|
9 |
+
new_version: meta-llama/Llama-3.2-3B-Instruct
|
10 |
+
pipeline_tag: text2text-generation
|
11 |
+
tags:
|
12 |
+
- Fortran
|
13 |
+
- Rust
|
14 |
+
- FortranToRust
|
15 |
+
---
|
16 |
+
# Model Card for Model ID
|
17 |
+
|
18 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
19 |
+
|
20 |
+
This modelcard aims to be a base template for new models. It has been generated using [unsloth/Llama-3.2-3B-Instruct](https://huggingface.co/unsloth/Llama-3.2-3B-Instruct).
|
21 |
+
|
22 |
+
## Model Details
|
23 |
+
|
24 |
+
### Model Description
|
25 |
+
|
26 |
+
CodeConvLLM is a language model specifically designed to translate OCaml and Fortran code into C# and Rust. It integrates seamlessly with Visual Studio Code through a plugin and ensures industry-standard translations by benchmarking outputs against best practices in software engineering.
|
27 |
+
|
28 |
+
|
29 |
+
- **Developed by:** [Caslow Chien](https://huggingface.co/Caslow) and [Chandrahas Aroori](https://huggingface.co/charoori)
|
30 |
+
- **License:** MIT
|
31 |
+
- **Finetuned from model:** [unsloth/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct)
|
32 |
+
|
33 |
+
### Model Sources
|
34 |
+
|
35 |
+
- **Repository:** [GitHub Repo](https://github.com/CodeTranslatorLLM/LinguistLLM)
|
36 |
+
|
37 |
+
## Uses
|
38 |
+
|
39 |
+
### Direct Use
|
40 |
+
The model can be used directly for code translation tasks. Users can input OCaml or Fortran code into the Gradio dashboard or via the API and receive C# or Rust code as output. It is particularly suitable for developers needing efficient, accurate language conversion in software migration or integration projects.
|
41 |
+
|
42 |
+
### Downstream Use [optional]
|
43 |
+
Developers can integrate this model into larger IDE ecosystems, CI/CD pipelines, or automated code-refactoring systems for multi-language development projects.
|
44 |
+
|
45 |
+
### Out-of-Scope Use
|
46 |
+
The model should not be used for:
|
47 |
+
+ Translating non-code text.
|
48 |
+
+ Translating between languages it is not trained for (e.g., Python to Java).
|
49 |
+
+ Malicious purposes, such as creating obfuscated or harmful code.
|
50 |
+
+
|
51 |
+
## Bias, Risks, and Limitations
|
52 |
+
While the model achieves high accuracy in most cases, it may introduce errors in certain edge cases or highly domain-specific code. Users must verify and test generated outputs thoroughly before deployment.
|
53 |
+
|
54 |
+
### Recommendations
|
55 |
+
+ Validation: Benchmark the output using standard tools and manual review.
|
56 |
+
+ Testing: Integrate automated testing during translation workflows to catch potential bugs or inaccuracies.
|
57 |
+
|
58 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
59 |
+
|
60 |
+
## How to Get Started with the Model
|
61 |
+
|
62 |
+
Please visit the [GitHub Repo](https://github.com/CodeTranslatorLLM/LinguistLLM) for a detailed guide.
|
63 |
+
|
64 |
+
**Quick Guide**
|
65 |
+
1. Load the model
|
66 |
+
```python
|
67 |
+
from unsloth import FastLanguageModel
|
68 |
+
from transformers import TextStreamer
|
69 |
+
|
70 |
+
max_seq_length = 2048
|
71 |
+
dtype = None
|
72 |
+
load_in_4bit = True
|
73 |
+
|
74 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
75 |
+
model_name = "lora_model", # OUR MODEL YOU USED FOR TRAINING, put it under the same folder
|
76 |
+
max_seq_length = max_seq_length,
|
77 |
+
dtype = dtype,
|
78 |
+
load_in_4bit = load_in_4bit,
|
79 |
+
)
|
80 |
+
FastLanguageModel.for_inference(model)
|
81 |
+
```
|
82 |
+
|
83 |
+
2. Get your input
|
84 |
+
```python
|
85 |
+
USER_INPUT_CODE = # YOUR FORTRAN CODE
|
86 |
+
USER_INPUT_EXPLANATION = # YOUR FORTRAN CODE EXPLANATION
|
87 |
+
messages = [
|
88 |
+
{
|
89 |
+
"role": "user",
|
90 |
+
"content": str("[Fortran Code]") + str(USER_INPUT_CODE) + str("[Fortran Code Explain]" )+ str(USER_INPUT_EXPLANATION)
|
91 |
+
},
|
92 |
+
]
|
93 |
+
inputs = tokenizer.apply_chat_template(
|
94 |
+
messages,
|
95 |
+
tokenize = True,
|
96 |
+
add_generation_prompt = True, # Must add for generation
|
97 |
+
return_tensors = "pt",
|
98 |
+
).to("cuda")
|
99 |
+
```
|
100 |
+
|
101 |
+
3. Run the model
|
102 |
+
```python
|
103 |
+
text_streamer = TextStreamer(tokenizer, skip_prompt = True)
|
104 |
+
_ = model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 2000,
|
105 |
+
use_cache = True, temperature = 1.5, min_p = 0.1)
|
106 |
+
```
|
107 |
+
|
108 |
+
## Training Details
|
109 |
+
|
110 |
+
Please visit the [GitHub Repo](https://github.com/CodeTranslatorLLM/LinguistLLM) for a detailed guide.
|
111 |
+
|
112 |
+
### Training Data
|
113 |
+
|
114 |
+
Please visit the [GitHub Repo](https://github.com/CodeTranslatorLLM/LinguistLLM) for a detailed guide.
|
115 |
+
|
116 |
+
### Training Procedure
|
117 |
+
|
118 |
+
Please visit the [GitHub Repo](https://github.com/CodeTranslatorLLM/LinguistLLM) for a detailed guide.
|
lora_model/adapter_config.json β adapter_config.json
RENAMED
File without changes
|
lora_model/adapter_model.safetensors β adapter_model.safetensors
RENAMED
File without changes
|
lora_model/README.md
DELETED
@@ -1,202 +0,0 @@
|
|
1 |
-
---
|
2 |
-
base_model: unsloth/llama-3.2-3b-instruct-bnb-4bit
|
3 |
-
library_name: peft
|
4 |
-
---
|
5 |
-
|
6 |
-
# Model Card for Model ID
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
### Framework versions
|
201 |
-
|
202 |
-
- PEFT 0.13.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lora_model/special_tokens_map.json β special_tokens_map.json
RENAMED
File without changes
|
lora_model/tokenizer.json β tokenizer.json
RENAMED
File without changes
|
lora_model/tokenizer_config.json β tokenizer_config.json
RENAMED
File without changes
|