Caslow commited on
Commit
6587f1d
Β·
1 Parent(s): e5bb26d

Re-add tokenizer.json with LFS

Browse files
README.md CHANGED
@@ -5,5 +5,114 @@ datasets:
5
  language:
6
  - en
7
  base_model:
8
- - meta-llama/Llama-3.2-3B-Instruct
9
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  language:
6
  - en
7
  base_model:
8
+ - unsloth/Llama-3.2-3B-Instruct
9
+ new_version: meta-llama/Llama-3.2-3B-Instruct
10
+ pipeline_tag: text2text-generation
11
+ tags:
12
+ - Fortran
13
+ - Rust
14
+ - FortranToRust
15
+ ---
16
+ # Model Card for Model ID
17
+
18
+ <!-- Provide a quick summary of what the model is/does. -->
19
+
20
+ This modelcard aims to be a base template for new models. It has been generated using [unsloth/Llama-3.2-3B-Instruct](https://huggingface.co/unsloth/Llama-3.2-3B-Instruct).
21
+
22
+ ## Model Details
23
+
24
+ ### Model Description
25
+
26
+ CodeConvLLM is a language model specifically designed to translate OCaml and Fortran code into C# and Rust. It integrates seamlessly with Visual Studio Code through a plugin and ensures industry-standard translations by benchmarking outputs against best practices in software engineering.
27
+
28
+
29
+ - **Developed by:** [Caslow Chien](https://huggingface.co/Caslow) and [Chandrahas Aroori](https://huggingface.co/charoori)
30
+ - **License:** MIT
31
+ - **Finetuned from model:** [unsloth/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct)
32
+
33
+ ### Model Sources
34
+
35
+ - **Repository:** [GitHub Repo](https://github.com/CodeTranslatorLLM/LinguistLLM)
36
+
37
+ ## Uses
38
+
39
+ ### Direct Use
40
+ The model can be used directly for code translation tasks. Users can input OCaml or Fortran code into the Gradio dashboard or via the API and receive C# or Rust code as output. It is particularly suitable for developers needing efficient, accurate language conversion in software migration or integration projects.
41
+
42
+ ### Downstream Use [optional]
43
+ Developers can integrate this model into larger IDE ecosystems, CI/CD pipelines, or automated code-refactoring systems for multi-language development projects.
44
+
45
+ ### Out-of-Scope Use
46
+ The model should not be used for:
47
+ + Translating non-code text.
48
+ + Translating between languages it is not trained for (e.g., Python to Java).
49
+ + Malicious purposes, such as creating obfuscated or harmful code.
50
+ +
51
+ ## Bias, Risks, and Limitations
52
+ While the model achieves high accuracy in most cases, it may introduce errors in certain edge cases or highly domain-specific code. Users must verify and test generated outputs thoroughly before deployment.
53
+
54
+ ### Recommendations
55
+ + Validation: Benchmark the output using standard tools and manual review.
56
+ + Testing: Integrate automated testing during translation workflows to catch potential bugs or inaccuracies.
57
+
58
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
59
+
60
+ ## How to Get Started with the Model
61
+
62
+ Please visit the [GitHub Repo](https://github.com/CodeTranslatorLLM/LinguistLLM) for a detailed guide.
63
+
64
+ **Quick Guide**
65
+ 1. Load the model
66
+ ```python
67
+ from unsloth import FastLanguageModel
68
+ from transformers import TextStreamer
69
+
70
+ max_seq_length = 2048
71
+ dtype = None
72
+ load_in_4bit = True
73
+
74
+ model, tokenizer = FastLanguageModel.from_pretrained(
75
+ model_name = "lora_model", # OUR MODEL YOU USED FOR TRAINING, put it under the same folder
76
+ max_seq_length = max_seq_length,
77
+ dtype = dtype,
78
+ load_in_4bit = load_in_4bit,
79
+ )
80
+ FastLanguageModel.for_inference(model)
81
+ ```
82
+
83
+ 2. Get your input
84
+ ```python
85
+ USER_INPUT_CODE = # YOUR FORTRAN CODE
86
+ USER_INPUT_EXPLANATION = # YOUR FORTRAN CODE EXPLANATION
87
+ messages = [
88
+ {
89
+ "role": "user",
90
+ "content": str("[Fortran Code]") + str(USER_INPUT_CODE) + str("[Fortran Code Explain]" )+ str(USER_INPUT_EXPLANATION)
91
+ },
92
+ ]
93
+ inputs = tokenizer.apply_chat_template(
94
+ messages,
95
+ tokenize = True,
96
+ add_generation_prompt = True, # Must add for generation
97
+ return_tensors = "pt",
98
+ ).to("cuda")
99
+ ```
100
+
101
+ 3. Run the model
102
+ ```python
103
+ text_streamer = TextStreamer(tokenizer, skip_prompt = True)
104
+ _ = model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 2000,
105
+ use_cache = True, temperature = 1.5, min_p = 0.1)
106
+ ```
107
+
108
+ ## Training Details
109
+
110
+ Please visit the [GitHub Repo](https://github.com/CodeTranslatorLLM/LinguistLLM) for a detailed guide.
111
+
112
+ ### Training Data
113
+
114
+ Please visit the [GitHub Repo](https://github.com/CodeTranslatorLLM/LinguistLLM) for a detailed guide.
115
+
116
+ ### Training Procedure
117
+
118
+ Please visit the [GitHub Repo](https://github.com/CodeTranslatorLLM/LinguistLLM) for a detailed guide.
lora_model/adapter_config.json β†’ adapter_config.json RENAMED
File without changes
lora_model/adapter_model.safetensors β†’ adapter_model.safetensors RENAMED
File without changes
lora_model/README.md DELETED
@@ -1,202 +0,0 @@
1
- ---
2
- base_model: unsloth/llama-3.2-3b-instruct-bnb-4bit
3
- library_name: peft
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
- ### Framework versions
201
-
202
- - PEFT 0.13.2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lora_model/special_tokens_map.json β†’ special_tokens_map.json RENAMED
File without changes
lora_model/tokenizer.json β†’ tokenizer.json RENAMED
File without changes
lora_model/tokenizer_config.json β†’ tokenizer_config.json RENAMED
File without changes