Upload 3 files
Browse filesAdd model .pth, training files.
- phishing_mlp_model.pth +3 -0
- training.py +830 -0
- training_results.png +0 -0
phishing_mlp_model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7dc2bd19101c1eb353d5e9bbf22bf2c76c457a998799e194e409a372ea421353
|
3 |
+
size 9348
|
training.py
ADDED
@@ -0,0 +1,830 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.optim as optim
|
4 |
+
from torch.utils.data import Dataset, DataLoader, random_split
|
5 |
+
import pandas as pd
|
6 |
+
import numpy as np
|
7 |
+
import json
|
8 |
+
import os
|
9 |
+
import re
|
10 |
+
import urllib.parse
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
from collections import Counter
|
13 |
+
from sklearn.model_selection import train_test_split
|
14 |
+
from sklearn.preprocessing import StandardScaler
|
15 |
+
import tqdm
|
16 |
+
|
17 |
+
# --- Healthcare URL Detection Components ---
|
18 |
+
|
19 |
+
# Healthcare-related keywords for domain detection
|
20 |
+
HEALTHCARE_KEYWORDS = [
|
21 |
+
'health', 'medical', 'hospital', 'clinic', 'pharma', 'patient', 'care', 'med',
|
22 |
+
'doctor', 'physician', 'nurse', 'therapy', 'rehab', 'dental', 'cardio', 'neuro',
|
23 |
+
'oncology', 'pediatric', 'orthopedic', 'surgery', 'diagnostic', 'wellbeing',
|
24 |
+
'wellness', 'ehr', 'emr', 'mychart', 'medicare', 'medicaid', 'insurance'
|
25 |
+
]
|
26 |
+
|
27 |
+
# Common healthcare institutions and systems
|
28 |
+
HEALTHCARE_INSTITUTIONS = [
|
29 |
+
'mayo', 'cleveland', 'hopkins', 'kaiser', 'mount sinai', 'cedars', 'baylor',
|
30 |
+
'nhs', 'quest', 'labcorp', 'cvs', 'walgreens', 'aetna', 'cigna', 'unitedhealthcare',
|
31 |
+
'bluecross', 'anthem', 'humana', 'va.gov', 'cdc', 'who', 'nih'
|
32 |
+
]
|
33 |
+
|
34 |
+
# Healthcare TLDs and specific domains
|
35 |
+
HEALTHCARE_DOMAINS = ['.health', '.healthcare', '.medicine', '.hospital', '.clinic', 'mychart.']
|
36 |
+
|
37 |
+
# --- Feature Extraction Functions ---
|
38 |
+
|
39 |
+
def url_length(url):
|
40 |
+
"""Return the length of the URL."""
|
41 |
+
return len(url)
|
42 |
+
|
43 |
+
def num_dots(url):
|
44 |
+
"""Return the number of dots in the URL."""
|
45 |
+
return url.count('.')
|
46 |
+
|
47 |
+
def num_hyphens(url):
|
48 |
+
"""Return the number of hyphens in the URL."""
|
49 |
+
return url.count('-')
|
50 |
+
|
51 |
+
def num_at(url):
|
52 |
+
"""Return the number of @ symbols in the URL."""
|
53 |
+
return url.count('@')
|
54 |
+
|
55 |
+
def num_tilde(url):
|
56 |
+
"""Return the number of ~ symbols in the URL."""
|
57 |
+
return url.count('~')
|
58 |
+
|
59 |
+
def num_underscore(url):
|
60 |
+
"""Return the number of underscores in the URL."""
|
61 |
+
return url.count('_')
|
62 |
+
|
63 |
+
def num_percent(url):
|
64 |
+
"""Return the number of percent symbols in the URL."""
|
65 |
+
return url.count('%')
|
66 |
+
|
67 |
+
def num_ampersand(url):
|
68 |
+
"""Return the number of ampersands in the URL."""
|
69 |
+
return url.count('&')
|
70 |
+
|
71 |
+
def num_hash(url):
|
72 |
+
"""Return the number of hash symbols in the URL."""
|
73 |
+
return url.count('#')
|
74 |
+
|
75 |
+
def has_https(url):
|
76 |
+
"""Return 1 if the URL uses HTTPS, 0 otherwise."""
|
77 |
+
return int(url.startswith('https://'))
|
78 |
+
|
79 |
+
def has_ip_address(url):
|
80 |
+
"""Check if the URL contains an IP address instead of a domain name."""
|
81 |
+
try:
|
82 |
+
parsed_url = urllib.parse.urlparse(url)
|
83 |
+
if re.match(r'^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$', parsed_url.netloc):
|
84 |
+
return 1
|
85 |
+
# Check for IPv6
|
86 |
+
if re.match(r'^\[[0-9a-fA-F:]+\]$', parsed_url.netloc):
|
87 |
+
return 1
|
88 |
+
return 0
|
89 |
+
except:
|
90 |
+
return 0
|
91 |
+
|
92 |
+
def get_hostname_length(url):
|
93 |
+
"""Return the length of the hostname."""
|
94 |
+
try:
|
95 |
+
parsed_url = urllib.parse.urlparse(url)
|
96 |
+
return len(parsed_url.netloc)
|
97 |
+
except:
|
98 |
+
return 0
|
99 |
+
|
100 |
+
def get_path_length(url):
|
101 |
+
"""Return the length of the path."""
|
102 |
+
try:
|
103 |
+
parsed_url = urllib.parse.urlparse(url)
|
104 |
+
return len(parsed_url.path)
|
105 |
+
except:
|
106 |
+
return 0
|
107 |
+
|
108 |
+
def get_path_level(url):
|
109 |
+
"""Return the number of directories in the path."""
|
110 |
+
try:
|
111 |
+
parsed_url = urllib.parse.urlparse(url)
|
112 |
+
return parsed_url.path.count('/')
|
113 |
+
except:
|
114 |
+
return 0
|
115 |
+
|
116 |
+
def get_subdomain_level(url):
|
117 |
+
"""Return the number of subdomains in the URL."""
|
118 |
+
try:
|
119 |
+
parsed_url = urllib.parse.urlparse(url)
|
120 |
+
hostname = parsed_url.netloc
|
121 |
+
if has_ip_address(url):
|
122 |
+
return 0 # IP addresses don't have subdomains
|
123 |
+
|
124 |
+
parts = hostname.split('.')
|
125 |
+
# Remove top-level and second-level domains
|
126 |
+
if len(parts) > 2:
|
127 |
+
return len(parts) - 2 # Count remaining parts as subdomain levels
|
128 |
+
else:
|
129 |
+
return 0 # No subdomains
|
130 |
+
except:
|
131 |
+
return 0
|
132 |
+
|
133 |
+
def has_double_slash_in_path(url):
|
134 |
+
"""Check if the path contains a double slash."""
|
135 |
+
try:
|
136 |
+
parsed_url = urllib.parse.urlparse(url)
|
137 |
+
return int('//' in parsed_url.path)
|
138 |
+
except:
|
139 |
+
return 0
|
140 |
+
|
141 |
+
def get_tld(url):
|
142 |
+
"""Extract the top-level domain from a URL."""
|
143 |
+
try:
|
144 |
+
parsed_url = urllib.parse.urlparse(url)
|
145 |
+
hostname = parsed_url.netloc.lower()
|
146 |
+
parts = hostname.split('.')
|
147 |
+
if len(parts) > 1:
|
148 |
+
return parts[-1]
|
149 |
+
return ''
|
150 |
+
except:
|
151 |
+
return ''
|
152 |
+
|
153 |
+
def count_digits(url):
|
154 |
+
"""Count the number of digits in the URL."""
|
155 |
+
return sum(c.isdigit() for c in url)
|
156 |
+
|
157 |
+
def digit_ratio(url):
|
158 |
+
"""Calculate the ratio of digits to the total URL length."""
|
159 |
+
if len(url) == 0:
|
160 |
+
return 0
|
161 |
+
return count_digits(url) / len(url)
|
162 |
+
|
163 |
+
def count_letters(url):
|
164 |
+
"""Count the number of letters in the URL."""
|
165 |
+
return sum(c.isalpha() for c in url)
|
166 |
+
|
167 |
+
def letter_ratio(url):
|
168 |
+
"""Calculate the ratio of letters to the total URL length."""
|
169 |
+
if len(url) == 0:
|
170 |
+
return 0
|
171 |
+
return count_letters(url) / len(url)
|
172 |
+
|
173 |
+
def count_special_chars(url):
|
174 |
+
"""Count the number of special characters in the URL."""
|
175 |
+
return sum(not c.isalnum() and not c.isspace() for c in url)
|
176 |
+
|
177 |
+
def special_char_ratio(url):
|
178 |
+
"""Calculate the ratio of special characters to the total URL length."""
|
179 |
+
if len(url) == 0:
|
180 |
+
return 0
|
181 |
+
return count_special_chars(url) / len(url)
|
182 |
+
|
183 |
+
def get_query_length(url):
|
184 |
+
"""Return the length of the query string."""
|
185 |
+
try:
|
186 |
+
parsed_url = urllib.parse.urlparse(url)
|
187 |
+
return len(parsed_url.query)
|
188 |
+
except:
|
189 |
+
return 0
|
190 |
+
|
191 |
+
def get_fragment_length(url):
|
192 |
+
"""Return the length of the fragment."""
|
193 |
+
try:
|
194 |
+
parsed_url = urllib.parse.urlparse(url)
|
195 |
+
return len(parsed_url.fragment)
|
196 |
+
except:
|
197 |
+
return 0
|
198 |
+
|
199 |
+
def healthcare_relevance_score(url):
|
200 |
+
"""
|
201 |
+
Calculate a relevance score for healthcare-related URLs.
|
202 |
+
Higher scores indicate stronger relation to healthcare.
|
203 |
+
"""
|
204 |
+
url_lower = url.lower()
|
205 |
+
parsed_url = urllib.parse.urlparse(url_lower)
|
206 |
+
domain = parsed_url.netloc
|
207 |
+
path = parsed_url.path
|
208 |
+
|
209 |
+
score = 0
|
210 |
+
|
211 |
+
# Check for healthcare keywords in domain
|
212 |
+
for keyword in HEALTHCARE_KEYWORDS:
|
213 |
+
if keyword in domain:
|
214 |
+
score += 3
|
215 |
+
elif keyword in path:
|
216 |
+
score += 1
|
217 |
+
|
218 |
+
# Check for healthcare institutions
|
219 |
+
for institution in HEALTHCARE_INSTITUTIONS:
|
220 |
+
if institution in domain:
|
221 |
+
score += 4
|
222 |
+
elif institution in path:
|
223 |
+
score += 2
|
224 |
+
|
225 |
+
# Check for healthcare-specific domains and TLDs
|
226 |
+
for healthcare_domain in HEALTHCARE_DOMAINS:
|
227 |
+
if healthcare_domain in domain:
|
228 |
+
score += 3
|
229 |
+
|
230 |
+
# Check for EHR/patient portal indicators
|
231 |
+
if 'portal' in domain or 'portal' in path:
|
232 |
+
score += 2
|
233 |
+
if 'patient' in domain or 'mychart' in domain:
|
234 |
+
score += 3
|
235 |
+
if 'ehr' in domain or 'emr' in domain:
|
236 |
+
score += 3
|
237 |
+
|
238 |
+
# Normalize score to be between 0 and 1
|
239 |
+
return min(score / 10.0, 1.0)
|
240 |
+
|
241 |
+
def extract_features(url):
|
242 |
+
"""Extract all features from a given URL."""
|
243 |
+
features = [
|
244 |
+
# Core features (the original 17)
|
245 |
+
num_dots(url),
|
246 |
+
get_subdomain_level(url),
|
247 |
+
get_path_level(url),
|
248 |
+
url_length(url),
|
249 |
+
num_hyphens(url),
|
250 |
+
num_at(url),
|
251 |
+
num_tilde(url),
|
252 |
+
num_underscore(url),
|
253 |
+
num_percent(url),
|
254 |
+
num_ampersand(url),
|
255 |
+
num_hash(url),
|
256 |
+
has_https(url),
|
257 |
+
has_ip_address(url),
|
258 |
+
get_hostname_length(url),
|
259 |
+
get_path_length(url),
|
260 |
+
has_double_slash_in_path(url),
|
261 |
+
|
262 |
+
# Additional features
|
263 |
+
digit_ratio(url),
|
264 |
+
letter_ratio(url),
|
265 |
+
special_char_ratio(url),
|
266 |
+
get_query_length(url),
|
267 |
+
get_fragment_length(url),
|
268 |
+
healthcare_relevance_score(url)
|
269 |
+
]
|
270 |
+
return features
|
271 |
+
|
272 |
+
def get_feature_names():
|
273 |
+
"""Get names of all features in the order they are extracted."""
|
274 |
+
return [
|
275 |
+
'num_dots', 'subdomain_level', 'path_level', 'url_length',
|
276 |
+
'num_hyphens', 'num_at', 'num_tilde', 'num_underscore',
|
277 |
+
'num_percent', 'num_ampersand', 'num_hash', 'has_https',
|
278 |
+
'has_ip_address', 'hostname_length', 'path_length',
|
279 |
+
'double_slash_in_path', 'digit_ratio', 'letter_ratio',
|
280 |
+
'special_char_ratio', 'query_length', 'fragment_length',
|
281 |
+
'healthcare_relevance'
|
282 |
+
]
|
283 |
+
|
284 |
+
# --- Dataset Loading and Processing ---
|
285 |
+
|
286 |
+
class URLDataset(Dataset):
|
287 |
+
def __init__(self, features, labels):
|
288 |
+
"""
|
289 |
+
Custom PyTorch Dataset for URL features and labels.
|
290 |
+
|
291 |
+
Args:
|
292 |
+
features (numpy.ndarray): Feature vectors for each URL
|
293 |
+
labels (numpy.ndarray): Labels for each URL (0 for benign, 1 for malicious)
|
294 |
+
"""
|
295 |
+
self.features = torch.tensor(features, dtype=torch.float32)
|
296 |
+
self.labels = torch.tensor(labels, dtype=torch.long)
|
297 |
+
|
298 |
+
def __len__(self):
|
299 |
+
return len(self.labels)
|
300 |
+
|
301 |
+
def __getitem__(self, idx):
|
302 |
+
return self.features[idx], self.labels[idx]
|
303 |
+
|
304 |
+
def load_huggingface_data(file_path):
|
305 |
+
"""
|
306 |
+
Load the Hugging Face dataset from a JSON file.
|
307 |
+
|
308 |
+
Args:
|
309 |
+
file_path: Path to the JSON file
|
310 |
+
|
311 |
+
Returns:
|
312 |
+
List of tuples containing (url, label)
|
313 |
+
"""
|
314 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
315 |
+
data = json.load(f)
|
316 |
+
|
317 |
+
url_data = []
|
318 |
+
for item in data:
|
319 |
+
url = item.get('text', '')
|
320 |
+
label = item.get('label', -1)
|
321 |
+
if url and label != -1: # Only add entries with valid URLs and labels
|
322 |
+
url_data.append((url, label))
|
323 |
+
|
324 |
+
print(f"Loaded {len(url_data)} URLs from Hugging Face dataset")
|
325 |
+
return url_data
|
326 |
+
|
327 |
+
def load_phiusiil_data(file_path):
|
328 |
+
"""
|
329 |
+
Load the PhiUSIIL dataset from a CSV file.
|
330 |
+
|
331 |
+
Args:
|
332 |
+
file_path: Path to the CSV file
|
333 |
+
|
334 |
+
Returns:
|
335 |
+
List of tuples containing (url, label)
|
336 |
+
"""
|
337 |
+
df = pd.read_csv(file_path)
|
338 |
+
|
339 |
+
url_data = []
|
340 |
+
for _, row in df.iterrows():
|
341 |
+
url = row['URL']
|
342 |
+
label = row['label']
|
343 |
+
if isinstance(url, str) and url.strip() and not pd.isna(label):
|
344 |
+
url_data.append((url, label))
|
345 |
+
|
346 |
+
print(f"Loaded {len(url_data)} URLs from PhiUSIIL dataset")
|
347 |
+
return url_data
|
348 |
+
|
349 |
+
def load_kaggle_data(file_path):
|
350 |
+
"""
|
351 |
+
Load the Kaggle malicious_phish.csv dataset.
|
352 |
+
|
353 |
+
Args:
|
354 |
+
file_path: Path to the CSV file
|
355 |
+
|
356 |
+
Returns:
|
357 |
+
List of tuples containing (url, label)
|
358 |
+
"""
|
359 |
+
df = pd.read_csv(file_path)
|
360 |
+
|
361 |
+
url_data = []
|
362 |
+
for _, row in df.iterrows():
|
363 |
+
url = row['url']
|
364 |
+
type_val = row['type']
|
365 |
+
|
366 |
+
# Convert to binary classification (0 for benign, 1 for all others)
|
367 |
+
label = 0 if type_val.lower() == 'benign' else 1
|
368 |
+
|
369 |
+
if isinstance(url, str) and url.strip():
|
370 |
+
url_data.append((url, label))
|
371 |
+
|
372 |
+
print(f"Loaded {len(url_data)} URLs from Kaggle dataset")
|
373 |
+
return url_data
|
374 |
+
|
375 |
+
def combine_and_deduplicate(datasets):
|
376 |
+
"""
|
377 |
+
Combine multiple datasets and remove duplicates by URL.
|
378 |
+
|
379 |
+
Args:
|
380 |
+
datasets: List of datasets, each containing (url, label) tuples
|
381 |
+
|
382 |
+
Returns:
|
383 |
+
Tuple of (urls, labels) with duplicates removed
|
384 |
+
"""
|
385 |
+
url_to_label = {}
|
386 |
+
|
387 |
+
# Process each dataset
|
388 |
+
for dataset in datasets:
|
389 |
+
for url, label in dataset:
|
390 |
+
# If we've seen this URL before with a different label,
|
391 |
+
# prefer the malicious label (1) for safety
|
392 |
+
if url in url_to_label:
|
393 |
+
url_to_label[url] = max(url_to_label[url], label)
|
394 |
+
else:
|
395 |
+
url_to_label[url] = label
|
396 |
+
|
397 |
+
# Convert to lists
|
398 |
+
urls = list(url_to_label.keys())
|
399 |
+
labels = list(url_to_label.values())
|
400 |
+
|
401 |
+
print(f"After deduplication: {len(urls)} unique URLs")
|
402 |
+
|
403 |
+
# Report class distribution
|
404 |
+
label_counts = Counter(labels)
|
405 |
+
print(f"Class distribution - Benign (0): {label_counts[0]}, Malicious (1): {label_counts[1]}")
|
406 |
+
|
407 |
+
return urls, labels
|
408 |
+
|
409 |
+
def extract_all_features(urls):
|
410 |
+
"""
|
411 |
+
Extract features from a list of URLs.
|
412 |
+
|
413 |
+
Args:
|
414 |
+
urls: List of URL strings
|
415 |
+
|
416 |
+
Returns:
|
417 |
+
Numpy array of feature vectors
|
418 |
+
"""
|
419 |
+
feature_vectors = []
|
420 |
+
|
421 |
+
# Use tqdm for a progress bar
|
422 |
+
for url in tqdm.tqdm(urls, desc="Extracting features"):
|
423 |
+
try:
|
424 |
+
features = extract_features(url)
|
425 |
+
feature_vectors.append(features)
|
426 |
+
except Exception as e:
|
427 |
+
print(f"Error extracting features from {url}: {str(e)}")
|
428 |
+
# Insert a vector of zeros in case of error
|
429 |
+
feature_vectors.append([0] * len(get_feature_names()))
|
430 |
+
|
431 |
+
return np.array(feature_vectors, dtype=np.float32)
|
432 |
+
|
433 |
+
# --- MLP Model ---
|
434 |
+
class PhishingMLP(nn.Module):
|
435 |
+
def __init__(self, input_size=22, hidden_sizes=[22, 30, 10], output_size=1):
|
436 |
+
"""
|
437 |
+
Multilayer Perceptron for Phishing URL Detection.
|
438 |
+
|
439 |
+
Args:
|
440 |
+
input_size: Number of input features (default: 22)
|
441 |
+
hidden_sizes: List of neurons in each hidden layer
|
442 |
+
output_size: Number of output classes (1 for binary)
|
443 |
+
"""
|
444 |
+
super(PhishingMLP, self).__init__()
|
445 |
+
|
446 |
+
self.layers = nn.ModuleList()
|
447 |
+
|
448 |
+
# Input layer to first hidden layer
|
449 |
+
self.layers.append(nn.Linear(input_size, hidden_sizes[0]))
|
450 |
+
self.layers.append(nn.ReLU())
|
451 |
+
|
452 |
+
# Hidden layers
|
453 |
+
for i in range(len(hidden_sizes) - 1):
|
454 |
+
self.layers.append(nn.Linear(hidden_sizes[i], hidden_sizes[i+1]))
|
455 |
+
self.layers.append(nn.ReLU())
|
456 |
+
|
457 |
+
# Output layer
|
458 |
+
self.layers.append(nn.Linear(hidden_sizes[-1], output_size))
|
459 |
+
self.layers.append(nn.Sigmoid())
|
460 |
+
|
461 |
+
def forward(self, x):
|
462 |
+
"""Forward pass through the network."""
|
463 |
+
for layer in self.layers:
|
464 |
+
x = layer(x)
|
465 |
+
return x
|
466 |
+
|
467 |
+
# --- Training Functions ---
|
468 |
+
def train_mlp(model, train_loader, val_loader, epochs=25, learning_rate=0.001, device="cpu"):
|
469 |
+
"""
|
470 |
+
Train the MLP model.
|
471 |
+
|
472 |
+
Args:
|
473 |
+
model: The MLP model
|
474 |
+
train_loader: DataLoader for training data
|
475 |
+
val_loader: DataLoader for validation data
|
476 |
+
epochs: Number of training epochs
|
477 |
+
learning_rate: Learning rate for optimization
|
478 |
+
device: Device to train on (cpu or cuda)
|
479 |
+
|
480 |
+
Returns:
|
481 |
+
Tuple of (trained_model, train_losses, val_losses, val_accuracies)
|
482 |
+
"""
|
483 |
+
model.to(device)
|
484 |
+
criterion = nn.BCELoss()
|
485 |
+
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
486 |
+
|
487 |
+
train_losses = []
|
488 |
+
val_losses = []
|
489 |
+
val_accuracies = []
|
490 |
+
|
491 |
+
print(f"Training on {device}...")
|
492 |
+
for epoch in range(epochs):
|
493 |
+
# Training phase
|
494 |
+
model.train()
|
495 |
+
running_loss = 0.0
|
496 |
+
|
497 |
+
for inputs, labels in train_loader:
|
498 |
+
inputs, labels = inputs.to(device), labels.to(device)
|
499 |
+
|
500 |
+
# Zero the parameter gradients
|
501 |
+
optimizer.zero_grad()
|
502 |
+
|
503 |
+
# Forward + backward + optimize
|
504 |
+
outputs = model(inputs)
|
505 |
+
loss = criterion(outputs, labels.unsqueeze(1).float())
|
506 |
+
loss.backward()
|
507 |
+
optimizer.step()
|
508 |
+
|
509 |
+
running_loss += loss.item()
|
510 |
+
|
511 |
+
# Calculate average training loss
|
512 |
+
epoch_train_loss = running_loss / len(train_loader)
|
513 |
+
train_losses.append(epoch_train_loss)
|
514 |
+
|
515 |
+
# Validation phase
|
516 |
+
model.eval()
|
517 |
+
val_loss = 0.0
|
518 |
+
correct = 0
|
519 |
+
total = 0
|
520 |
+
|
521 |
+
with torch.no_grad():
|
522 |
+
for inputs, labels in val_loader:
|
523 |
+
inputs, labels = inputs.to(device), labels.to(device)
|
524 |
+
outputs = model(inputs)
|
525 |
+
|
526 |
+
# Calculate validation loss
|
527 |
+
loss = criterion(outputs, labels.unsqueeze(1).float())
|
528 |
+
val_loss += loss.item()
|
529 |
+
|
530 |
+
# Calculate accuracy
|
531 |
+
predicted = (outputs > 0.5).float()
|
532 |
+
total += labels.size(0)
|
533 |
+
correct += (predicted.squeeze() == labels.float()).sum().item()
|
534 |
+
|
535 |
+
# Calculate average validation loss and accuracy
|
536 |
+
epoch_val_loss = val_loss / len(val_loader)
|
537 |
+
val_losses.append(epoch_val_loss)
|
538 |
+
|
539 |
+
val_accuracy = 100 * correct / total
|
540 |
+
val_accuracies.append(val_accuracy)
|
541 |
+
|
542 |
+
# Print progress
|
543 |
+
print(f"Epoch {epoch+1}/{epochs}, Train Loss: {epoch_train_loss:.4f}, Val Loss: {epoch_val_loss:.4f}, Val Acc: {val_accuracy:.2f}%")
|
544 |
+
|
545 |
+
return model, train_losses, val_losses, val_accuracies
|
546 |
+
|
547 |
+
def evaluate_model(model, test_loader, device):
|
548 |
+
"""
|
549 |
+
Evaluate the trained model on test data.
|
550 |
+
|
551 |
+
Args:
|
552 |
+
model: Trained model
|
553 |
+
test_loader: DataLoader for test data
|
554 |
+
device: Device to evaluate on
|
555 |
+
|
556 |
+
Returns:
|
557 |
+
Tuple of (accuracy, precision, recall, f1_score)
|
558 |
+
"""
|
559 |
+
model.to(device)
|
560 |
+
model.eval()
|
561 |
+
|
562 |
+
correct = 0
|
563 |
+
total = 0
|
564 |
+
true_positives = 0
|
565 |
+
false_positives = 0
|
566 |
+
false_negatives = 0
|
567 |
+
healthcare_correct = 0
|
568 |
+
healthcare_total = 0
|
569 |
+
|
570 |
+
feature_idx = get_feature_names().index('healthcare_relevance')
|
571 |
+
healthcare_threshold = 0.5 # Threshold for considering a URL healthcare-related
|
572 |
+
|
573 |
+
with torch.no_grad():
|
574 |
+
for inputs, labels in test_loader:
|
575 |
+
inputs, labels = inputs.to(device), labels.to(device)
|
576 |
+
|
577 |
+
# Forward pass
|
578 |
+
outputs = model(inputs)
|
579 |
+
predicted = (outputs > 0.5).float().squeeze()
|
580 |
+
|
581 |
+
# Update counts
|
582 |
+
total += labels.size(0)
|
583 |
+
correct += (predicted == labels.float()).sum().item()
|
584 |
+
|
585 |
+
# Metrics calculation
|
586 |
+
for i in range(labels.size(0)):
|
587 |
+
if labels[i] == 1 and predicted[i] == 1:
|
588 |
+
true_positives += 1
|
589 |
+
elif labels[i] == 0 and predicted[i] == 1:
|
590 |
+
false_positives += 1
|
591 |
+
elif labels[i] == 1 and predicted[i] == 0:
|
592 |
+
false_negatives += 1
|
593 |
+
|
594 |
+
# Check healthcare relevance
|
595 |
+
if inputs[i, feature_idx] >= healthcare_threshold:
|
596 |
+
healthcare_total += 1
|
597 |
+
if predicted[i] == labels[i]:
|
598 |
+
healthcare_correct += 1
|
599 |
+
|
600 |
+
# Calculate metrics
|
601 |
+
accuracy = 100 * correct / total
|
602 |
+
precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) > 0 else 0.0
|
603 |
+
recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) > 0 else 0.0
|
604 |
+
f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0.0
|
605 |
+
|
606 |
+
# Healthcare-specific accuracy
|
607 |
+
healthcare_accuracy = 100 * healthcare_correct / healthcare_total if healthcare_total > 0 else 0.0
|
608 |
+
|
609 |
+
print(f"Overall Test Accuracy: {accuracy:.2f}%")
|
610 |
+
print(f"Precision: {precision:.4f}, Recall: {recall:.4f}, F1-Score: {f1:.4f}")
|
611 |
+
print(f"Healthcare URLs identified: {healthcare_total} ({healthcare_total/total*100:.2f}%)")
|
612 |
+
print(f"Healthcare URL Detection Accuracy: {healthcare_accuracy:.2f}%")
|
613 |
+
|
614 |
+
return accuracy, precision, recall, f1, healthcare_accuracy
|
615 |
+
|
616 |
+
def plot_training_results(train_losses, val_losses, val_accuracies):
|
617 |
+
"""
|
618 |
+
Plot training metrics.
|
619 |
+
|
620 |
+
Args:
|
621 |
+
train_losses: List of training losses
|
622 |
+
val_losses: List of validation losses
|
623 |
+
val_accuracies: List of validation accuracies
|
624 |
+
"""
|
625 |
+
plt.figure(figsize=(15, 5))
|
626 |
+
|
627 |
+
# Plot losses
|
628 |
+
plt.subplot(1, 2, 1)
|
629 |
+
plt.plot(train_losses, label='Training Loss')
|
630 |
+
plt.plot(val_losses, label='Validation Loss')
|
631 |
+
plt.xlabel('Epoch')
|
632 |
+
plt.ylabel('Loss')
|
633 |
+
plt.title('Training and Validation Loss')
|
634 |
+
plt.legend()
|
635 |
+
|
636 |
+
# Plot accuracy
|
637 |
+
plt.subplot(1, 2, 2)
|
638 |
+
plt.plot(val_accuracies, label='Validation Accuracy')
|
639 |
+
plt.xlabel('Epoch')
|
640 |
+
plt.ylabel('Accuracy (%)')
|
641 |
+
plt.title('Validation Accuracy')
|
642 |
+
plt.legend()
|
643 |
+
|
644 |
+
plt.tight_layout()
|
645 |
+
plt.savefig('training_results.png')
|
646 |
+
plt.show()
|
647 |
+
|
648 |
+
def analyze_healthcare_features(features, labels, pred_labels):
|
649 |
+
"""
|
650 |
+
Analyze how the model performs on healthcare-related URLs.
|
651 |
+
|
652 |
+
Args:
|
653 |
+
features: Feature vectors
|
654 |
+
labels: True labels
|
655 |
+
pred_labels: Predicted labels
|
656 |
+
"""
|
657 |
+
healthcare_idx = get_feature_names().index('healthcare_relevance')
|
658 |
+
healthcare_scores = features[:, healthcare_idx]
|
659 |
+
|
660 |
+
# Define thresholds
|
661 |
+
thresholds = [0.1, 0.3, 0.5, 0.7, 0.9]
|
662 |
+
|
663 |
+
print("\n=== Healthcare URL Analysis ===")
|
664 |
+
print("Healthcare relevance score distribution:")
|
665 |
+
for threshold in thresholds:
|
666 |
+
count = np.sum(healthcare_scores >= threshold)
|
667 |
+
percent = (count / len(healthcare_scores)) * 100
|
668 |
+
print(f" Score >= {threshold}: {count} URLs ({percent:.2f}%)")
|
669 |
+
|
670 |
+
# Analyze performance at different healthcare relevance levels
|
671 |
+
for threshold in thresholds:
|
672 |
+
mask = healthcare_scores >= threshold
|
673 |
+
if np.sum(mask) == 0:
|
674 |
+
continue
|
675 |
+
|
676 |
+
h_labels = labels[mask]
|
677 |
+
h_preds = pred_labels[mask]
|
678 |
+
h_accuracy = np.mean(h_labels == h_preds) * 100
|
679 |
+
|
680 |
+
benign_count = np.sum(h_labels == 0)
|
681 |
+
malicious_count = np.sum(h_labels == 1)
|
682 |
+
|
683 |
+
print(f"\nFor healthcare relevance >= {threshold}:")
|
684 |
+
print(f" URLs: {np.sum(mask)} ({benign_count} benign, {malicious_count} malicious)")
|
685 |
+
print(f" Accuracy: {h_accuracy:.2f}%")
|
686 |
+
|
687 |
+
# Calculate healthcare-specific metrics
|
688 |
+
tp = np.sum((h_labels == 1) & (h_preds == 1))
|
689 |
+
fp = np.sum((h_labels == 0) & (h_preds == 1))
|
690 |
+
fn = np.sum((h_labels == 1) & (h_preds == 0))
|
691 |
+
|
692 |
+
precision = tp / (tp + fp) if (tp + fp) > 0 else 0
|
693 |
+
recall = tp / (tp + fn) if (tp + fn) > 0 else 0
|
694 |
+
f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
|
695 |
+
|
696 |
+
print(f" Precision: {precision:.4f}, Recall: {recall:.4f}, F1: {f1:.4f}")
|
697 |
+
|
698 |
+
# Calculate false positive rate for healthcare URLs
|
699 |
+
if benign_count > 0:
|
700 |
+
h_fpr = np.sum((h_labels == 0) & (h_preds == 1)) / benign_count
|
701 |
+
print(f" False Positive Rate: {h_fpr:.4f}")
|
702 |
+
|
703 |
+
# Calculate false negative rate for healthcare URLs
|
704 |
+
if malicious_count > 0:
|
705 |
+
h_fnr = np.sum((h_labels == 1) & (h_preds == 0)) / malicious_count
|
706 |
+
print(f" False Negative Rate: {h_fnr:.4f}")
|
707 |
+
|
708 |
+
# --- Main Function ---
|
709 |
+
def main():
|
710 |
+
"""Main function to run the entire pipeline."""
|
711 |
+
# Configuration
|
712 |
+
batch_size = 32
|
713 |
+
learning_rate = 0.001
|
714 |
+
epochs = 20
|
715 |
+
test_size = 0.2
|
716 |
+
val_size = 0.2
|
717 |
+
random_seed = 42
|
718 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
719 |
+
|
720 |
+
# Filenames
|
721 |
+
huggingface_file = "urls.json"
|
722 |
+
phiusiil_file = "PhiUSIIL_Phishing_URL_Dataset.csv"
|
723 |
+
kaggle_file = "malicious_phish.csv"
|
724 |
+
|
725 |
+
# Load datasets
|
726 |
+
print("Loading datasets...")
|
727 |
+
huggingface_data = load_huggingface_data(huggingface_file)
|
728 |
+
phiusiil_data = load_phiusiil_data(phiusiil_file)
|
729 |
+
kaggle_data = load_kaggle_data(kaggle_file)
|
730 |
+
|
731 |
+
# Combine and deduplicate datasets
|
732 |
+
print("Combining and deduplicating datasets...")
|
733 |
+
urls, labels = combine_and_deduplicate([huggingface_data, phiusiil_data, kaggle_data])
|
734 |
+
|
735 |
+
# Extract features
|
736 |
+
print("Extracting features...")
|
737 |
+
features = extract_all_features(urls)
|
738 |
+
|
739 |
+
# Split into train, validation, and test sets
|
740 |
+
print("Splitting data...")
|
741 |
+
X_train_val, X_test, y_train_val, y_test = train_test_split(
|
742 |
+
features, labels, test_size=test_size, random_state=random_seed, stratify=labels
|
743 |
+
)
|
744 |
+
|
745 |
+
X_train, X_val, y_train, y_val = train_test_split(
|
746 |
+
X_train_val, y_train_val, test_size=val_size/(1-test_size),
|
747 |
+
random_state=random_seed, stratify=y_train_val
|
748 |
+
)
|
749 |
+
|
750 |
+
# Standardize features
|
751 |
+
print("Standardizing features...")
|
752 |
+
scaler = StandardScaler()
|
753 |
+
X_train = scaler.fit_transform(X_train)
|
754 |
+
X_val = scaler.transform(X_val)
|
755 |
+
X_test = scaler.transform(X_test)
|
756 |
+
|
757 |
+
# Create PyTorch datasets and dataloaders
|
758 |
+
print("Creating DataLoaders...")
|
759 |
+
train_dataset = URLDataset(X_train, y_train)
|
760 |
+
val_dataset = URLDataset(X_val, y_val)
|
761 |
+
test_dataset = URLDataset(X_test, y_test)
|
762 |
+
|
763 |
+
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
764 |
+
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
|
765 |
+
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
|
766 |
+
|
767 |
+
# Initialize and train model
|
768 |
+
print("Initializing model...")
|
769 |
+
input_size = features.shape[1] # Number of features
|
770 |
+
model = PhishingMLP(input_size=input_size)
|
771 |
+
|
772 |
+
print("Training model...")
|
773 |
+
trained_model, train_losses, val_losses, val_accuracies = train_mlp(
|
774 |
+
model, train_loader, val_loader, epochs=epochs,
|
775 |
+
learning_rate=learning_rate, device=device
|
776 |
+
)
|
777 |
+
|
778 |
+
# Save trained model
|
779 |
+
print("Saving model...")
|
780 |
+
model_path = "phishing_mlp_model.pth"
|
781 |
+
torch.save(trained_model.state_dict(), model_path)
|
782 |
+
print(f"Model saved to {model_path}")
|
783 |
+
|
784 |
+
# Evaluate on test set
|
785 |
+
print("\nEvaluating model on test set...")
|
786 |
+
acc, prec, rec, f1, healthcare_acc = evaluate_model(trained_model, test_loader, device)
|
787 |
+
|
788 |
+
# Plot results
|
789 |
+
plot_training_results(train_losses, val_losses, val_accuracies)
|
790 |
+
|
791 |
+
# Further healthcare analysis
|
792 |
+
y_pred = []
|
793 |
+
trained_model.eval()
|
794 |
+
with torch.no_grad():
|
795 |
+
for inputs, _ in test_loader:
|
796 |
+
inputs = inputs.to(device)
|
797 |
+
outputs = trained_model(inputs)
|
798 |
+
predicted = (outputs > 0.5).float().squeeze().cpu().numpy()
|
799 |
+
y_pred.extend(predicted.tolist())
|
800 |
+
|
801 |
+
analyze_healthcare_features(X_test, np.array(y_test), np.array(y_pred))
|
802 |
+
|
803 |
+
# Print feature importance summary
|
804 |
+
feature_names = get_feature_names()
|
805 |
+
healthcare_idx = feature_names.index('healthcare_relevance')
|
806 |
+
healthcare_scores = features[:, healthcare_idx]
|
807 |
+
high_healthcare = healthcare_scores >= 0.5
|
808 |
+
|
809 |
+
print("\n=== Healthcare URL Examples ===")
|
810 |
+
high_healthcare_indices = np.where(high_healthcare)[0][:5] # Get first 5 indices
|
811 |
+
for idx in high_healthcare_indices:
|
812 |
+
print(f"URL: {urls[idx]}")
|
813 |
+
print(f"Healthcare Score: {healthcare_scores[idx]:.2f}")
|
814 |
+
print(f"Label: {'Malicious' if labels[idx] == 1 else 'Benign'}")
|
815 |
+
print()
|
816 |
+
|
817 |
+
# Summary
|
818 |
+
print("\n=== Summary ===")
|
819 |
+
print(f"Total URLs processed: {len(urls)}")
|
820 |
+
print(f"Training set: {len(X_train)} URLs")
|
821 |
+
print(f"Validation set: {len(X_val)} URLs")
|
822 |
+
print(f"Test set: {len(X_test)} URLs")
|
823 |
+
print(f"Model input features: {input_size}")
|
824 |
+
print(f"Test Accuracy: {acc:.2f}%")
|
825 |
+
print(f"Healthcare URL Accuracy: {healthcare_acc:.2f}%")
|
826 |
+
print(f"Precision: {prec:.4f}, Recall: {rec:.4f}, F1-Score: {f1:.4f}")
|
827 |
+
print("\nTraining complete!")
|
828 |
+
|
829 |
+
if __name__ == "__main__":
|
830 |
+
main()
|
training_results.png
ADDED
![]() |