import torch.nn as nn class TumorClassification(nn.Module): def __init__(self): super().__init__() self.model = nn.Sequential( nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(2), nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(2), nn.Flatten(), nn.Linear(32 * 56 * 56, 128), nn.ReLU(), nn.Linear(128, 4) # 4 classes: glioma, meningioma, notumor, pituitary ) def forward(self, x): return self.model(x) class GliomaStageModel(nn.Module): def __init__(self): super().__init__() self.model = nn.Sequential( nn.Linear(9, 128), nn.ReLU(), nn.Linear(128, 64), nn.ReLU(), nn.Linear(64, 4) # 4 glioma stages ) def forward(self, x): return self.model(x)