AdithyaSK commited on
Commit
e1a8690
1 Parent(s): b9ede70

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +160 -195
README.md CHANGED
@@ -1,199 +1,164 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - hindi
5
+ - bilingual
6
+ license: llama2
7
+ datasets:
8
+ - sarvamai/samvaad-hi-v1
9
+ language:
10
+ - hi
11
+ - en
12
  ---
13
 
14
+ # LLama3-Gaja-Hindi-8B-v0.1
15
+
16
+ ## Overview
17
+
18
+ LLama3-Gaja-Hindi-8B-v0.1 is an extension of the Ambari series, a bilingual English/Hindi model developed and released by [Cognitivelab.in](https://www.cognitivelab.in/). This model is specialized for natural language understanding tasks, particularly in the context of instructional pairs. It is built upon the [Llama3 8b](https://huggingface.co/meta-llama/Meta-Llama-3-8B) model, utilizing a fine-tuning process with a curated dataset of translated instructional pairs.
19
+
20
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/6442d975ad54813badc1ddf7/G0u9L6RQJFinST0chQmfL.jpeg" width="500px">
21
+
22
+ ## Generate
23
+ ```python
24
+ import torch
25
+ from transformers import AutoModelForCausalLM, AutoTokenizer
26
+ from transformers import GenerationConfig, TextStreamer , TextIteratorStreamer
27
+
28
+ model = AutoModelForCausalLM.from_pretrained("Cognitive-Lab/LLama3-Gaja-Hindi-8B-v0.1", torch_dtype=torch.bfloat16).to("cuda")
29
+ tokenizer = AutoTokenizer.from_pretrained("Cognitive-Lab/LLama3-Gaja-Hindi-8B-v0.1", trust_remote_code=True)
30
+
31
+ # Existing messages list
32
+ messages = [
33
+ {"role": "system", "content": " You are Gaja, an AI assistant created by Cognitivelab and trained on top of Llama 3 Large language model (LLM), proficient in English and Hindi. You can respond in both languages based on the user's request."},
34
+ {"role": "user", "content": "Who are you"}
35
+ ]
36
+
37
+ input_ids = tokenizer.apply_chat_template(
38
+ messages,
39
+ add_generation_prompt=True,
40
+ # tokenize=False,
41
+ return_tensors="pt"
42
+ ).to("cuda")
43
+
44
+ outputs = model.generate(
45
+ input_ids,
46
+ max_new_tokens=256,
47
+ eos_token_id=tokenizer.convert_tokens_to_ids("<|eot_id|>"),
48
+ do_sample=True,
49
+ temperature=0.6,
50
+ top_p=0.9,
51
+ )
52
+ response = outputs[0][input_ids.shape[-1]:]
53
+ print(tokenizer.decode(response, skip_special_tokens=True))
54
+ ```
55
+
56
+
57
+ ## Multi-turn Chat
58
+
59
+ To use the Ambari-7B-Instruct-v0.1 model, you can follow the example code below:
60
+
61
+ ```python
62
+ import torch
63
+ from transformers import AutoModelForCausalLM, AutoTokenizer
64
+ from transformers import GenerationConfig, TextStreamer , TextIteratorStreamer
65
+
66
+ model = AutoModelForCausalLM.from_pretrained("Cognitive-Lab/LLama3-Gaja-Hindi-8B-v0.1", torch_dtype=torch.bfloat16).to("cuda")
67
+ tokenizer = AutoTokenizer.from_pretrained("Cognitive-Lab/LLama3-Gaja-Hindi-8B-v0.1", trust_remote_code=True)
68
+
69
+ # Existing messages list
70
+ messages = [
71
+ {"role": "system", "content": " You are Gaja, an AI assistant created by Cognitivelab and trained on top of Llama 3 Large language model (LLM), proficient in English and Hindi. You can respond in both languages based on the user's request."},
72
+ ]
73
+
74
+ # Function to add user input and generate response
75
+ def process_user_input(user_input):
76
+ global messages
77
+ # Add user's input to messages list
78
+ messages.append({"role": "user", "content": user_input})
79
+
80
+ # Prepare the prompt for generation
81
+ prompt_formatted_message = tokenizer.apply_chat_template(
82
+ messages,
83
+ add_generation_prompt=True,
84
+ tokenize=False
85
+ )
86
+
87
+ # Configure generation parameters
88
+ generation_config = GenerationConfig(
89
+ repetition_penalty=1.2,
90
+ max_new_tokens=8000,
91
+ temperature=0.2,
92
+ top_p=0.95,
93
+ top_k=40,
94
+ bos_token_id=tokenizer.bos_token_id,
95
+ eos_token_id=tokenizer.convert_tokens_to_ids("<|eot_id|>"),
96
+ pad_token_id=tokenizer.pad_token_id,
97
+ do_sample=True,
98
+ use_cache=True,
99
+ return_dict_in_generate=True,
100
+ output_attentions=False,
101
+ output_hidden_states=False,
102
+ output_scores=False,
103
+ )
104
+
105
+ streamer = TextStreamer(tokenizer)
106
+ batch = tokenizer(str(prompt_formatted_message.strip()), return_tensors="pt")
107
+ print("\033[32mResponse: \033[0m") # Print an empty response
108
+ # Generate response
109
+ generated = model.generate(
110
+ inputs=batch["input_ids"].to("cuda"),
111
+ generation_config=generation_config,
112
+ streamer=streamer,
113
+
114
+ )
115
+
116
+ # Extract and format assistant's response
117
+ # print(tokenizer.decode(generated["sequences"].cpu().tolist()[0]))
118
+ assistant_response = tokenizer.decode(generated["sequences"].cpu().tolist()[0])
119
+ # Find the last occurrence of "assistant" and empty string ("")
120
+ assistant_start_index = assistant_response.rfind("<|start_header_id|>assistant<|end_header_id|>")
121
+ empty_string_index = assistant_response.rfind("<|eot_id|>")
122
+
123
+ # Extract the text between the last "assistant" and ""
124
+ if assistant_start_index != -1 and empty_string_index != -1:
125
+ final_response = assistant_response[assistant_start_index + len("<|start_header_id|>assistant<|end_header_id|>") : empty_string_index]
126
+ else:
127
+ # final_response = assistant_response # If indices not found, use the whole response
128
+ assert "Filed to generate multi turn prompt formate"
129
+
130
+ # Append the extracted response to the messages list
131
+ messages.append({"role": "assistant", "content": final_response})
132
+ # messages.append({"role": "assistant", "content": assistant_response})
133
+
134
+ # Print assistant's response
135
+ # print(f"Assistant: {assistant_response}")
136
+
137
+ # Main interaction loop
138
+ while True:
139
+ print("=================================================================================")
140
+ user_input = input("Input: ") # Prompt user for input
141
+
142
+ # Check if user_input is empty
143
+ if not user_input.strip(): # .strip() removes any leading or trailing whitespace
144
+ break # Break out of the loop if input is empty
145
+ # Print response placeholder
146
+ process_user_input(user_input) # Process user's input and generate response
147
+
148
+ ```
149
+
150
+ ## Prompt formate
151
+
152
+ system prompt = `You are Gaja, an AI assistant created by Cognitivelab and trained on top of Llama 3 Large language model(LLM), proficient in English and Hindi. You can respond in both languages based on the users request.`
153
+
154
+
155
+ ## Benchmarks
156
+ coming soon
157
+
158
+ ## Bilingual Instruct Fine-tuning
159
+
160
+ The model underwent a pivotal stage of supervised fine-tuning with low-rank adaptation, focusing on bilingual instruct fine-tuning. This approach involved training the model to respond adeptly in either English or Hindi based on the language specified in the user prompt or instruction.
161
+
162
+ ## References
163
+
164
+ - [Ambari-7B-Instruct Model](https://huggingface.co/Cognitive-Lab/Ambari-7B-Instruct-v0.1)