Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,164 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- hindi
|
5 |
+
- bilingual
|
6 |
+
license: llama2
|
7 |
+
datasets:
|
8 |
+
- sarvamai/samvaad-hi-v1
|
9 |
+
language:
|
10 |
+
- hi
|
11 |
+
- en
|
12 |
---
|
13 |
|
14 |
+
# LLama3-Gaja-Hindi-8B-v0.1
|
15 |
+
|
16 |
+
## Overview
|
17 |
+
|
18 |
+
LLama3-Gaja-Hindi-8B-v0.1 is an extension of the Ambari series, a bilingual English/Hindi model developed and released by [Cognitivelab.in](https://www.cognitivelab.in/). This model is specialized for natural language understanding tasks, particularly in the context of instructional pairs. It is built upon the [Llama3 8b](https://huggingface.co/meta-llama/Meta-Llama-3-8B) model, utilizing a fine-tuning process with a curated dataset of translated instructional pairs.
|
19 |
+
|
20 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/6442d975ad54813badc1ddf7/G0u9L6RQJFinST0chQmfL.jpeg" width="500px">
|
21 |
+
|
22 |
+
## Generate
|
23 |
+
```python
|
24 |
+
import torch
|
25 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
26 |
+
from transformers import GenerationConfig, TextStreamer , TextIteratorStreamer
|
27 |
+
|
28 |
+
model = AutoModelForCausalLM.from_pretrained("Cognitive-Lab/LLama3-Gaja-Hindi-8B-v0.1", torch_dtype=torch.bfloat16).to("cuda")
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained("Cognitive-Lab/LLama3-Gaja-Hindi-8B-v0.1", trust_remote_code=True)
|
30 |
+
|
31 |
+
# Existing messages list
|
32 |
+
messages = [
|
33 |
+
{"role": "system", "content": " You are Gaja, an AI assistant created by Cognitivelab and trained on top of Llama 3 Large language model (LLM), proficient in English and Hindi. You can respond in both languages based on the user's request."},
|
34 |
+
{"role": "user", "content": "Who are you"}
|
35 |
+
]
|
36 |
+
|
37 |
+
input_ids = tokenizer.apply_chat_template(
|
38 |
+
messages,
|
39 |
+
add_generation_prompt=True,
|
40 |
+
# tokenize=False,
|
41 |
+
return_tensors="pt"
|
42 |
+
).to("cuda")
|
43 |
+
|
44 |
+
outputs = model.generate(
|
45 |
+
input_ids,
|
46 |
+
max_new_tokens=256,
|
47 |
+
eos_token_id=tokenizer.convert_tokens_to_ids("<|eot_id|>"),
|
48 |
+
do_sample=True,
|
49 |
+
temperature=0.6,
|
50 |
+
top_p=0.9,
|
51 |
+
)
|
52 |
+
response = outputs[0][input_ids.shape[-1]:]
|
53 |
+
print(tokenizer.decode(response, skip_special_tokens=True))
|
54 |
+
```
|
55 |
+
|
56 |
+
|
57 |
+
## Multi-turn Chat
|
58 |
+
|
59 |
+
To use the Ambari-7B-Instruct-v0.1 model, you can follow the example code below:
|
60 |
+
|
61 |
+
```python
|
62 |
+
import torch
|
63 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
64 |
+
from transformers import GenerationConfig, TextStreamer , TextIteratorStreamer
|
65 |
+
|
66 |
+
model = AutoModelForCausalLM.from_pretrained("Cognitive-Lab/LLama3-Gaja-Hindi-8B-v0.1", torch_dtype=torch.bfloat16).to("cuda")
|
67 |
+
tokenizer = AutoTokenizer.from_pretrained("Cognitive-Lab/LLama3-Gaja-Hindi-8B-v0.1", trust_remote_code=True)
|
68 |
+
|
69 |
+
# Existing messages list
|
70 |
+
messages = [
|
71 |
+
{"role": "system", "content": " You are Gaja, an AI assistant created by Cognitivelab and trained on top of Llama 3 Large language model (LLM), proficient in English and Hindi. You can respond in both languages based on the user's request."},
|
72 |
+
]
|
73 |
+
|
74 |
+
# Function to add user input and generate response
|
75 |
+
def process_user_input(user_input):
|
76 |
+
global messages
|
77 |
+
# Add user's input to messages list
|
78 |
+
messages.append({"role": "user", "content": user_input})
|
79 |
+
|
80 |
+
# Prepare the prompt for generation
|
81 |
+
prompt_formatted_message = tokenizer.apply_chat_template(
|
82 |
+
messages,
|
83 |
+
add_generation_prompt=True,
|
84 |
+
tokenize=False
|
85 |
+
)
|
86 |
+
|
87 |
+
# Configure generation parameters
|
88 |
+
generation_config = GenerationConfig(
|
89 |
+
repetition_penalty=1.2,
|
90 |
+
max_new_tokens=8000,
|
91 |
+
temperature=0.2,
|
92 |
+
top_p=0.95,
|
93 |
+
top_k=40,
|
94 |
+
bos_token_id=tokenizer.bos_token_id,
|
95 |
+
eos_token_id=tokenizer.convert_tokens_to_ids("<|eot_id|>"),
|
96 |
+
pad_token_id=tokenizer.pad_token_id,
|
97 |
+
do_sample=True,
|
98 |
+
use_cache=True,
|
99 |
+
return_dict_in_generate=True,
|
100 |
+
output_attentions=False,
|
101 |
+
output_hidden_states=False,
|
102 |
+
output_scores=False,
|
103 |
+
)
|
104 |
+
|
105 |
+
streamer = TextStreamer(tokenizer)
|
106 |
+
batch = tokenizer(str(prompt_formatted_message.strip()), return_tensors="pt")
|
107 |
+
print("\033[32mResponse: \033[0m") # Print an empty response
|
108 |
+
# Generate response
|
109 |
+
generated = model.generate(
|
110 |
+
inputs=batch["input_ids"].to("cuda"),
|
111 |
+
generation_config=generation_config,
|
112 |
+
streamer=streamer,
|
113 |
+
|
114 |
+
)
|
115 |
+
|
116 |
+
# Extract and format assistant's response
|
117 |
+
# print(tokenizer.decode(generated["sequences"].cpu().tolist()[0]))
|
118 |
+
assistant_response = tokenizer.decode(generated["sequences"].cpu().tolist()[0])
|
119 |
+
# Find the last occurrence of "assistant" and empty string ("")
|
120 |
+
assistant_start_index = assistant_response.rfind("<|start_header_id|>assistant<|end_header_id|>")
|
121 |
+
empty_string_index = assistant_response.rfind("<|eot_id|>")
|
122 |
+
|
123 |
+
# Extract the text between the last "assistant" and ""
|
124 |
+
if assistant_start_index != -1 and empty_string_index != -1:
|
125 |
+
final_response = assistant_response[assistant_start_index + len("<|start_header_id|>assistant<|end_header_id|>") : empty_string_index]
|
126 |
+
else:
|
127 |
+
# final_response = assistant_response # If indices not found, use the whole response
|
128 |
+
assert "Filed to generate multi turn prompt formate"
|
129 |
+
|
130 |
+
# Append the extracted response to the messages list
|
131 |
+
messages.append({"role": "assistant", "content": final_response})
|
132 |
+
# messages.append({"role": "assistant", "content": assistant_response})
|
133 |
+
|
134 |
+
# Print assistant's response
|
135 |
+
# print(f"Assistant: {assistant_response}")
|
136 |
+
|
137 |
+
# Main interaction loop
|
138 |
+
while True:
|
139 |
+
print("=================================================================================")
|
140 |
+
user_input = input("Input: ") # Prompt user for input
|
141 |
+
|
142 |
+
# Check if user_input is empty
|
143 |
+
if not user_input.strip(): # .strip() removes any leading or trailing whitespace
|
144 |
+
break # Break out of the loop if input is empty
|
145 |
+
# Print response placeholder
|
146 |
+
process_user_input(user_input) # Process user's input and generate response
|
147 |
+
|
148 |
+
```
|
149 |
+
|
150 |
+
## Prompt formate
|
151 |
+
|
152 |
+
system prompt = `You are Gaja, an AI assistant created by Cognitivelab and trained on top of Llama 3 Large language model(LLM), proficient in English and Hindi. You can respond in both languages based on the users request.`
|
153 |
+
|
154 |
+
|
155 |
+
## Benchmarks
|
156 |
+
coming soon
|
157 |
+
|
158 |
+
## Bilingual Instruct Fine-tuning
|
159 |
+
|
160 |
+
The model underwent a pivotal stage of supervised fine-tuning with low-rank adaptation, focusing on bilingual instruct fine-tuning. This approach involved training the model to respond adeptly in either English or Hindi based on the language specified in the user prompt or instruction.
|
161 |
+
|
162 |
+
## References
|
163 |
+
|
164 |
+
- [Ambari-7B-Instruct Model](https://huggingface.co/Cognitive-Lab/Ambari-7B-Instruct-v0.1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|