--- library_name: transformers tags: - hindi - bilingual license: llama2 datasets: - sarvamai/samvaad-hi-v1 language: - hi - en --- # LLama3-Gaja-Hindi-8B-v0.1 ## Overview LLama3-Gaja-Hindi-8B-v0.1 is an extension of the Ambari series, a bilingual English/Hindi model developed and released by [Cognitivelab.in](https://www.cognitivelab.in/). This model is specialized for natural language understanding tasks, particularly in the context of instructional pairs. It is built upon the [Llama3 8b](https://huggingface.co/meta-llama/Meta-Llama-3-8B) model, utilizing a fine-tuning process with a curated dataset of translated instructional pairs. ## Generate ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import GenerationConfig, TextStreamer , TextIteratorStreamer model = AutoModelForCausalLM.from_pretrained("Cognitive-Lab/LLama3-Gaja-Hindi-8B-v0.1", torch_dtype=torch.bfloat16).to("cuda") tokenizer = AutoTokenizer.from_pretrained("Cognitive-Lab/LLama3-Gaja-Hindi-8B-v0.1", trust_remote_code=True) # Existing messages list messages = [ {"role": "system", "content": " You are Gaja, an AI assistant created by Cognitivelab and trained on top of Llama 3 Large language model (LLM), proficient in English and Hindi. You can respond in both languages based on the user's request."}, {"role": "user", "content": "Who are you"} ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, # tokenize=False, return_tensors="pt" ).to("cuda") outputs = model.generate( input_ids, max_new_tokens=256, eos_token_id=tokenizer.convert_tokens_to_ids("<|eot_id|>"), do_sample=True, temperature=0.6, top_p=0.9, ) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True)) ``` ## Multi-turn Chat To use the Ambari-7B-Instruct-v0.1 model, you can follow the example code below: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import GenerationConfig, TextStreamer , TextIteratorStreamer model = AutoModelForCausalLM.from_pretrained("Cognitive-Lab/LLama3-Gaja-Hindi-8B-v0.1", torch_dtype=torch.bfloat16).to("cuda") tokenizer = AutoTokenizer.from_pretrained("Cognitive-Lab/LLama3-Gaja-Hindi-8B-v0.1", trust_remote_code=True) # Existing messages list messages = [ {"role": "system", "content": " You are Gaja, an AI assistant created by Cognitivelab and trained on top of Llama 3 Large language model (LLM), proficient in English and Hindi. You can respond in both languages based on the user's request."}, ] # Function to add user input and generate response def process_user_input(user_input): global messages # Add user's input to messages list messages.append({"role": "user", "content": user_input}) # Prepare the prompt for generation prompt_formatted_message = tokenizer.apply_chat_template( messages, add_generation_prompt=True, tokenize=False ) # Configure generation parameters generation_config = GenerationConfig( repetition_penalty=1.2, max_new_tokens=8000, temperature=0.2, top_p=0.95, top_k=40, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.convert_tokens_to_ids("<|eot_id|>"), pad_token_id=tokenizer.pad_token_id, do_sample=True, use_cache=True, return_dict_in_generate=True, output_attentions=False, output_hidden_states=False, output_scores=False, ) streamer = TextStreamer(tokenizer) batch = tokenizer(str(prompt_formatted_message.strip()), return_tensors="pt") print("\033[32mResponse: \033[0m") # Print an empty response # Generate response generated = model.generate( inputs=batch["input_ids"].to("cuda"), generation_config=generation_config, streamer=streamer, ) # Extract and format assistant's response # print(tokenizer.decode(generated["sequences"].cpu().tolist()[0])) assistant_response = tokenizer.decode(generated["sequences"].cpu().tolist()[0]) # Find the last occurrence of "assistant" and empty string ("") assistant_start_index = assistant_response.rfind("<|start_header_id|>assistant<|end_header_id|>") empty_string_index = assistant_response.rfind("<|eot_id|>") # Extract the text between the last "assistant" and "" if assistant_start_index != -1 and empty_string_index != -1: final_response = assistant_response[assistant_start_index + len("<|start_header_id|>assistant<|end_header_id|>") : empty_string_index] else: # final_response = assistant_response # If indices not found, use the whole response assert "Filed to generate multi turn prompt formate" # Append the extracted response to the messages list messages.append({"role": "assistant", "content": final_response}) # messages.append({"role": "assistant", "content": assistant_response}) # Print assistant's response # print(f"Assistant: {assistant_response}") # Main interaction loop while True: print("=================================================================================") user_input = input("Input: ") # Prompt user for input # Check if user_input is empty if not user_input.strip(): # .strip() removes any leading or trailing whitespace break # Break out of the loop if input is empty # Print response placeholder process_user_input(user_input) # Process user's input and generate response ``` ## Prompt formate system prompt = `You are Gaja, an AI assistant created by Cognitivelab and trained on top of Llama 3 Large language model(LLM), proficient in English and Hindi. You can respond in both languages based on the users request.` ## Benchmarks coming soon ## Bilingual Instruct Fine-tuning The model underwent a pivotal stage of supervised fine-tuning with low-rank adaptation, focusing on bilingual instruct fine-tuning. This approach involved training the model to respond adeptly in either English or Hindi based on the language specified in the user prompt or instruction. ## References - [Ambari-7B-Instruct Model](https://huggingface.co/Cognitive-Lab/Ambari-7B-Instruct-v0.1)