Update README.md
Browse files
README.md
CHANGED
@@ -8,11 +8,15 @@ tags:
|
|
8 |
|
9 |
---
|
10 |
|
11 |
-
#
|
12 |
|
13 |
-
This is a [sentence-transformers](https://www.SBERT.net) model
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
<!--- Describe your model here -->
|
16 |
|
17 |
## Usage (Sentence-Transformers)
|
18 |
|
@@ -54,8 +58,8 @@ def mean_pooling(model_output, attention_mask):
|
|
54 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
55 |
|
56 |
# Load model from HuggingFace Hub
|
57 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
58 |
-
model = AutoModel.from_pretrained('
|
59 |
|
60 |
# Tokenize sentences
|
61 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
8 |
|
9 |
---
|
10 |
|
11 |
+
# GitHub Issues Preprocessed MPNet Sentence Transformer (10 Epochs)
|
12 |
|
13 |
+
This is a [sentence-transformers](https://www.SBERT.net) model, specific for GitHub Issue data.
|
14 |
+
|
15 |
+
## Dataset
|
16 |
+
|
17 |
+
For training, we used the [NLBSE22 dataset](https://nlbse2022.github.io/tools/), after removing issues with empty body and duplicates.
|
18 |
+
Similarity between title and body was used to train the sentence embedding model.
|
19 |
|
|
|
20 |
|
21 |
## Usage (Sentence-Transformers)
|
22 |
|
|
|
58 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
59 |
|
60 |
# Load model from HuggingFace Hub
|
61 |
+
tokenizer = AutoTokenizer.from_pretrained('Collab-uniba/github-issues-preprocessed-mpnet-st-e10')
|
62 |
+
model = AutoModel.from_pretrained('Collab-uniba/github-issues-preprocessed-mpnet-st-e10')
|
63 |
|
64 |
# Tokenize sentences
|
65 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|