root
commited on
Commit
·
310ac15
1
Parent(s):
98dcaae
first upload
Browse files- README.md +30 -3
- model_index.json +24 -0
- scheduler/scheduler.py +175 -0
- scheduler/scheduler_config.json +7 -0
- text_encoder/config.json +24 -0
- text_encoder/model.safetensors +3 -0
- tokenizer/merges.txt +0 -0
- tokenizer/special_tokens_map.json +24 -0
- tokenizer/tokenizer_config.json +38 -0
- tokenizer/vocab.json +0 -0
- transformer/config.json +22 -0
- transformer/diffusion_pytorch_model.safetensors +3 -0
- vqvae/config.json +39 -0
- vqvae/diffusion_pytorch_model.safetensors +3 -0
README.md
CHANGED
@@ -1,3 +1,30 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: text-to-image
|
3 |
+
license: apache-2.0
|
4 |
+
tags:
|
5 |
+
- Non-Autoregressive
|
6 |
+
---
|
7 |
+
|
8 |
+
# Monetico: An Efficient Reproduction of Meissonic for Text-to-Image Synthesis
|
9 |
+
|
10 |
+
## Introduction
|
11 |
+
Similar to Meissonic, Monetico is a non-autoregressive masked image modeling text-to-image synthesis model capable of generating high-resolution images. It is designed to run efficiently on consumer-grade graphics cards.
|
12 |
+
|
13 |
+
Monetico is an efficient reproduction of Meissonic. Trained on 8 H100 GPUs for approximately one week, Monetico can generate high-quality 512x512 images that are comparable to those produced by Meissonic and SDXL.
|
14 |
+
|
15 |
+
Monetico was developed by Collov Labs. We extend our gratitude to @MeissonFlow and @viiika for their valuable advice on efficient training.
|
16 |
+
|
17 |
+
## Usage
|
18 |
+
|
19 |
+
For detailed usage instructions, please refer to [GitHub repository](https://github.com/viiika/Meissonic).
|
20 |
+
|
21 |
+
## Citation
|
22 |
+
If you find this work helpful, please consider citing:
|
23 |
+
```bibtex
|
24 |
+
@article{bai2024meissonic,
|
25 |
+
title={Meissonic: Revitalizing Masked Generative Transformers for Efficient High-Resolution Text-to-Image Synthesis},
|
26 |
+
author={Bai, Jinbin and Ye, Tian and Chow, Wei and Song, Enxin and Chen, Qing-Guo and Li, Xiangtai and Dong, Zhen and Zhu, Lei and Yan, Shuicheng},
|
27 |
+
journal={arXiv preprint arXiv:2410.08261},
|
28 |
+
year={2024}
|
29 |
+
}
|
30 |
+
```
|
model_index.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "Pipeline",
|
3 |
+
"_diffusers_version": "0.30.2",
|
4 |
+
"scheduler": [
|
5 |
+
"scheduler",
|
6 |
+
"Scheduler"
|
7 |
+
],
|
8 |
+
"text_encoder": [
|
9 |
+
"transformers",
|
10 |
+
"CLIPTextModelWithProjection"
|
11 |
+
],
|
12 |
+
"tokenizer": [
|
13 |
+
"transformers",
|
14 |
+
"CLIPTokenizer"
|
15 |
+
],
|
16 |
+
"transformer": [
|
17 |
+
"transformer",
|
18 |
+
"Transformer2DModel"
|
19 |
+
],
|
20 |
+
"vqvae": [
|
21 |
+
"diffusers",
|
22 |
+
"VQModel"
|
23 |
+
]
|
24 |
+
}
|
scheduler/scheduler.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team and The MeissonFlow Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import math
|
15 |
+
from dataclasses import dataclass
|
16 |
+
from typing import List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
|
20 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
21 |
+
from diffusers.utils import BaseOutput
|
22 |
+
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
23 |
+
|
24 |
+
|
25 |
+
def gumbel_noise(t, generator=None):
|
26 |
+
device = generator.device if generator is not None else t.device
|
27 |
+
noise = torch.zeros_like(t, device=device).uniform_(0, 1, generator=generator).to(t.device)
|
28 |
+
return -torch.log((-torch.log(noise.clamp(1e-20))).clamp(1e-20))
|
29 |
+
|
30 |
+
|
31 |
+
def mask_by_random_topk(mask_len, probs, temperature=1.0, generator=None):
|
32 |
+
confidence = torch.log(probs.clamp(1e-20)) + temperature * gumbel_noise(probs, generator=generator)
|
33 |
+
sorted_confidence = torch.sort(confidence, dim=-1).values
|
34 |
+
cut_off = torch.gather(sorted_confidence, 1, mask_len.long())
|
35 |
+
masking = confidence < cut_off
|
36 |
+
return masking
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class SchedulerOutput(BaseOutput):
|
41 |
+
"""
|
42 |
+
Output class for the scheduler's `step` function output.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
46 |
+
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
47 |
+
denoising loop.
|
48 |
+
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
49 |
+
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
50 |
+
`pred_original_sample` can be used to preview progress or for guidance.
|
51 |
+
"""
|
52 |
+
|
53 |
+
prev_sample: torch.Tensor
|
54 |
+
pred_original_sample: torch.Tensor = None
|
55 |
+
|
56 |
+
|
57 |
+
class Scheduler(SchedulerMixin, ConfigMixin):
|
58 |
+
order = 1
|
59 |
+
|
60 |
+
temperatures: torch.Tensor
|
61 |
+
|
62 |
+
@register_to_config
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
mask_token_id: int,
|
66 |
+
masking_schedule: str = "cosine",
|
67 |
+
):
|
68 |
+
self.temperatures = None
|
69 |
+
self.timesteps = None
|
70 |
+
|
71 |
+
def set_timesteps(
|
72 |
+
self,
|
73 |
+
num_inference_steps: int,
|
74 |
+
temperature: Union[int, Tuple[int, int], List[int]] = (2, 0),
|
75 |
+
device: Union[str, torch.device] = None,
|
76 |
+
):
|
77 |
+
self.timesteps = torch.arange(num_inference_steps, device=device).flip(0)
|
78 |
+
|
79 |
+
if isinstance(temperature, (tuple, list)):
|
80 |
+
self.temperatures = torch.linspace(temperature[0], temperature[1], num_inference_steps, device=device)
|
81 |
+
else:
|
82 |
+
self.temperatures = torch.linspace(temperature, 0.01, num_inference_steps, device=device)
|
83 |
+
|
84 |
+
def step(
|
85 |
+
self,
|
86 |
+
model_output: torch.Tensor,
|
87 |
+
timestep: torch.long,
|
88 |
+
sample: torch.LongTensor,
|
89 |
+
starting_mask_ratio: int = 1,
|
90 |
+
generator: Optional[torch.Generator] = None,
|
91 |
+
return_dict: bool = True,
|
92 |
+
) -> Union[SchedulerOutput, Tuple]:
|
93 |
+
two_dim_input = sample.ndim == 3 and model_output.ndim == 4
|
94 |
+
|
95 |
+
if two_dim_input:
|
96 |
+
batch_size, codebook_size, height, width = model_output.shape
|
97 |
+
sample = sample.reshape(batch_size, height * width)
|
98 |
+
model_output = model_output.reshape(batch_size, codebook_size, height * width).permute(0, 2, 1)
|
99 |
+
|
100 |
+
unknown_map = sample == self.config.mask_token_id
|
101 |
+
|
102 |
+
probs = model_output.softmax(dim=-1)
|
103 |
+
|
104 |
+
device = probs.device
|
105 |
+
probs_ = probs.to(generator.device) if generator is not None else probs # handles when generator is on CPU
|
106 |
+
if probs_.device.type == "cpu" and probs_.dtype != torch.float32:
|
107 |
+
probs_ = probs_.float() # multinomial is not implemented for cpu half precision
|
108 |
+
probs_ = probs_.reshape(-1, probs.size(-1))
|
109 |
+
pred_original_sample = torch.multinomial(probs_, 1, generator=generator).to(device=device)
|
110 |
+
pred_original_sample = pred_original_sample[:, 0].view(*probs.shape[:-1])
|
111 |
+
pred_original_sample = torch.where(unknown_map, pred_original_sample, sample)
|
112 |
+
|
113 |
+
if timestep == 0:
|
114 |
+
prev_sample = pred_original_sample
|
115 |
+
else:
|
116 |
+
seq_len = sample.shape[1]
|
117 |
+
step_idx = (self.timesteps == timestep).nonzero()
|
118 |
+
ratio = (step_idx + 1) / len(self.timesteps)
|
119 |
+
|
120 |
+
if self.config.masking_schedule == "cosine":
|
121 |
+
mask_ratio = torch.cos(ratio * math.pi / 2)
|
122 |
+
elif self.config.masking_schedule == "linear":
|
123 |
+
mask_ratio = 1 - ratio
|
124 |
+
else:
|
125 |
+
raise ValueError(f"unknown masking schedule {self.config.masking_schedule}")
|
126 |
+
|
127 |
+
mask_ratio = starting_mask_ratio * mask_ratio
|
128 |
+
|
129 |
+
mask_len = (seq_len * mask_ratio).floor()
|
130 |
+
# do not mask more than amount previously masked
|
131 |
+
mask_len = torch.min(unknown_map.sum(dim=-1, keepdim=True) - 1, mask_len)
|
132 |
+
# mask at least one
|
133 |
+
mask_len = torch.max(torch.tensor([1], device=model_output.device), mask_len)
|
134 |
+
|
135 |
+
selected_probs = torch.gather(probs, -1, pred_original_sample[:, :, None])[:, :, 0]
|
136 |
+
# Ignores the tokens given in the input by overwriting their confidence.
|
137 |
+
selected_probs = torch.where(unknown_map, selected_probs, torch.finfo(selected_probs.dtype).max)
|
138 |
+
|
139 |
+
masking = mask_by_random_topk(mask_len, selected_probs, self.temperatures[step_idx], generator)
|
140 |
+
|
141 |
+
# Masks tokens with lower confidence.
|
142 |
+
prev_sample = torch.where(masking, self.config.mask_token_id, pred_original_sample)
|
143 |
+
|
144 |
+
if two_dim_input:
|
145 |
+
prev_sample = prev_sample.reshape(batch_size, height, width)
|
146 |
+
pred_original_sample = pred_original_sample.reshape(batch_size, height, width)
|
147 |
+
|
148 |
+
if not return_dict:
|
149 |
+
return (prev_sample, pred_original_sample)
|
150 |
+
|
151 |
+
return SchedulerOutput(prev_sample, pred_original_sample)
|
152 |
+
|
153 |
+
def add_noise(self, sample, timesteps, generator=None):
|
154 |
+
step_idx = (self.timesteps == timesteps).nonzero()
|
155 |
+
ratio = (step_idx + 1) / len(self.timesteps)
|
156 |
+
|
157 |
+
if self.config.masking_schedule == "cosine":
|
158 |
+
mask_ratio = torch.cos(ratio * math.pi / 2)
|
159 |
+
elif self.config.masking_schedule == "linear":
|
160 |
+
mask_ratio = 1 - ratio
|
161 |
+
else:
|
162 |
+
raise ValueError(f"unknown masking schedule {self.config.masking_schedule}")
|
163 |
+
|
164 |
+
mask_indices = (
|
165 |
+
torch.rand(
|
166 |
+
sample.shape, device=generator.device if generator is not None else sample.device, generator=generator
|
167 |
+
).to(sample.device)
|
168 |
+
< mask_ratio
|
169 |
+
)
|
170 |
+
|
171 |
+
masked_sample = sample.clone()
|
172 |
+
|
173 |
+
masked_sample[mask_indices] = self.config.mask_token_id
|
174 |
+
|
175 |
+
return masked_sample
|
scheduler/scheduler_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "Scheduler",
|
3 |
+
"_diffusers_version": "0.30.2",
|
4 |
+
"mask_token_id": 8255,
|
5 |
+
"masking_schedule": "cosine"
|
6 |
+
}
|
7 |
+
|
text_encoder/config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"CLIPTextModelWithProjection"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"dropout": 0.0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_size": 1024,
|
11 |
+
"initializer_factor": 1.0,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 4096,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 77,
|
16 |
+
"model_type": "clip_text_model",
|
17 |
+
"num_attention_heads": 16,
|
18 |
+
"num_hidden_layers": 24,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"projection_dim": 1024,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.44.2",
|
23 |
+
"vocab_size": 49408
|
24 |
+
}
|
text_encoder/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ed02ba1546554a152c5e1f4920ba14466e3749e7feb42d8111857a8ed510574
|
3 |
+
size 1416177568
|
tokenizer/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|startoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "!",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": true,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "!",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"49406": {
|
13 |
+
"content": "<|startoftext|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"49407": {
|
21 |
+
"content": "<|endoftext|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"bos_token": "<|startoftext|>",
|
30 |
+
"clean_up_tokenization_spaces": true,
|
31 |
+
"do_lower_case": true,
|
32 |
+
"eos_token": "<|endoftext|>",
|
33 |
+
"errors": "replace",
|
34 |
+
"model_max_length": 77,
|
35 |
+
"pad_token": "!",
|
36 |
+
"tokenizer_class": "CLIPTokenizer",
|
37 |
+
"unk_token": "<|endoftext|>"
|
38 |
+
}
|
tokenizer/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
transformer/config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "Transformer2DModel",
|
3 |
+
"_diffusers_version": "0.30.2",
|
4 |
+
"attention_head_dim": 128,
|
5 |
+
"axes_dims_rope": [
|
6 |
+
16,
|
7 |
+
56,
|
8 |
+
56
|
9 |
+
],
|
10 |
+
"codebook_size": 8192,
|
11 |
+
"downsample": true,
|
12 |
+
"guidance_embeds": false,
|
13 |
+
"in_channels": 64,
|
14 |
+
"joint_attention_dim": 1024,
|
15 |
+
"num_attention_heads": 8,
|
16 |
+
"num_layers": 14,
|
17 |
+
"num_single_layers": 28,
|
18 |
+
"patch_size": 1,
|
19 |
+
"pooled_projection_dim": 1024,
|
20 |
+
"upsample": true,
|
21 |
+
"vocab_size": 8256
|
22 |
+
}
|
transformer/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f6db36e88e25b7cf8f9a7c90f0084a760e81147324c3a33b079766f8d2eec9d
|
3 |
+
size 3994323336
|
vqvae/config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "VQModel",
|
3 |
+
"_diffusers_version": "0.30.2",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"block_out_channels": [
|
6 |
+
128,
|
7 |
+
256,
|
8 |
+
256,
|
9 |
+
512,
|
10 |
+
768
|
11 |
+
],
|
12 |
+
"down_block_types": [
|
13 |
+
"DownEncoderBlock2D",
|
14 |
+
"DownEncoderBlock2D",
|
15 |
+
"DownEncoderBlock2D",
|
16 |
+
"DownEncoderBlock2D",
|
17 |
+
"DownEncoderBlock2D"
|
18 |
+
],
|
19 |
+
"in_channels": 3,
|
20 |
+
"latent_channels": 64,
|
21 |
+
"layers_per_block": 2,
|
22 |
+
"lookup_from_codebook": true,
|
23 |
+
"mid_block_add_attention": false,
|
24 |
+
"norm_num_groups": 32,
|
25 |
+
"norm_type": "group",
|
26 |
+
"num_vq_embeddings": 8192,
|
27 |
+
"out_channels": 3,
|
28 |
+
"sample_size": 32,
|
29 |
+
"scaling_factor": 0.18215,
|
30 |
+
"up_block_types": [
|
31 |
+
"UpDecoderBlock2D",
|
32 |
+
"UpDecoderBlock2D",
|
33 |
+
"UpDecoderBlock2D",
|
34 |
+
"UpDecoderBlock2D",
|
35 |
+
"UpDecoderBlock2D"
|
36 |
+
],
|
37 |
+
"vq_embed_dim": null,
|
38 |
+
"force_upcast": true
|
39 |
+
}
|
vqvae/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1241a5c88b635af4f8cfb268e388ccaa70f55a458a473d68943e5c28d7b7f762
|
3 |
+
size 585009980
|