Conrad747 commited on
Commit
6cec759
1 Parent(s): 2137f1e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -21
README.md CHANGED
@@ -24,16 +24,16 @@ model-index:
24
  metrics:
25
  - name: Precision
26
  type: precision
27
- value: 0.7532580364900087
28
  - name: Recall
29
  type: recall
30
- value: 0.7416595380667237
31
  - name: F1
32
  type: f1
33
- value: 0.7474137931034481
34
  - name: Accuracy
35
  type: accuracy
36
- value: 0.9492845117845118
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lg-ner dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 0.2432
47
- - Precision: 0.7533
48
- - Recall: 0.7417
49
- - F1: 0.7474
50
- - Accuracy: 0.9493
51
 
52
  ## Model description
53
 
@@ -78,21 +78,21 @@ The following hyperparameters were used during training:
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
- | No log | 1.0 | 261 | 0.3950 | 0.5892 | 0.4380 | 0.5025 | 0.9104 |
82
- | 0.5722 | 2.0 | 522 | 0.2869 | 0.6306 | 0.6484 | 0.6394 | 0.9311 |
83
- | 0.5722 | 3.0 | 783 | 0.2300 | 0.7047 | 0.6758 | 0.6900 | 0.9452 |
84
- | 0.2424 | 4.0 | 1044 | 0.2293 | 0.6793 | 0.7340 | 0.7056 | 0.9426 |
85
- | 0.2424 | 5.0 | 1305 | 0.2208 | 0.7952 | 0.7074 | 0.7488 | 0.9497 |
86
- | 0.1564 | 6.0 | 1566 | 0.2345 | 0.7104 | 0.7408 | 0.7253 | 0.9447 |
87
- | 0.1564 | 7.0 | 1827 | 0.2312 | 0.6956 | 0.7605 | 0.7266 | 0.9456 |
88
- | 0.112 | 8.0 | 2088 | 0.2404 | 0.7673 | 0.7417 | 0.7542 | 0.9500 |
89
- | 0.112 | 9.0 | 2349 | 0.2303 | 0.7698 | 0.7553 | 0.7625 | 0.9531 |
90
- | 0.0879 | 10.0 | 2610 | 0.2432 | 0.7533 | 0.7417 | 0.7474 | 0.9493 |
91
 
92
 
93
  ### Framework versions
94
 
95
- - Transformers 4.26.1
96
  - Pytorch 1.13.1+cu116
97
- - Datasets 2.10.1
98
  - Tokenizers 0.13.2
 
24
  metrics:
25
  - name: Precision
26
  type: precision
27
+ value: 0.7958904109589041
28
  - name: Recall
29
  type: recall
30
+ value: 0.7803895231699127
31
  - name: F1
32
  type: f1
33
+ value: 0.7880637504238724
34
  - name: Accuracy
35
  type: accuracy
36
+ value: 0.9450776825903877
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
43
 
44
  This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lg-ner dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 0.2863
47
+ - Precision: 0.7959
48
+ - Recall: 0.7804
49
+ - F1: 0.7881
50
+ - Accuracy: 0.9451
51
 
52
  ## Model description
53
 
 
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 1.0 | 261 | 0.5454 | 0.4946 | 0.2471 | 0.3296 | 0.8597 |
82
+ | 0.6168 | 2.0 | 522 | 0.3598 | 0.6993 | 0.5608 | 0.6224 | 0.9078 |
83
+ | 0.6168 | 3.0 | 783 | 0.3842 | 0.6326 | 0.6696 | 0.6506 | 0.8941 |
84
+ | 0.2599 | 4.0 | 1044 | 0.2755 | 0.7857 | 0.6870 | 0.7331 | 0.9333 |
85
+ | 0.2599 | 5.0 | 1305 | 0.2642 | 0.8019 | 0.7206 | 0.7591 | 0.9351 |
86
+ | 0.1498 | 6.0 | 1566 | 0.2755 | 0.7886 | 0.7589 | 0.7734 | 0.9385 |
87
+ | 0.1498 | 7.0 | 1827 | 0.2601 | 0.7945 | 0.7609 | 0.7774 | 0.9458 |
88
+ | 0.1023 | 8.0 | 2088 | 0.2889 | 0.7875 | 0.7717 | 0.7795 | 0.9409 |
89
+ | 0.1023 | 9.0 | 2349 | 0.2819 | 0.8082 | 0.7670 | 0.7870 | 0.9460 |
90
+ | 0.0716 | 10.0 | 2610 | 0.2863 | 0.7959 | 0.7804 | 0.7881 | 0.9451 |
91
 
92
 
93
  ### Framework versions
94
 
95
+ - Transformers 4.27.4
96
  - Pytorch 1.13.1+cu116
97
+ - Datasets 2.11.0
98
  - Tokenizers 0.13.2