update model card README.md
Browse files
README.md
CHANGED
@@ -24,16 +24,16 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
-
value: 0.
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
-
value: 0.
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
-
value: 0.
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
-
value: 0.
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lg-ner dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
-
- Loss: 0.
|
47 |
-
- Precision: 0.
|
48 |
-
- Recall: 0.
|
49 |
-
- F1: 0.
|
50 |
-
- Accuracy: 0.
|
51 |
|
52 |
## Model description
|
53 |
|
@@ -78,21 +78,21 @@ The following hyperparameters were used during training:
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
-
| No log | 1.0 | 261 | 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
|
92 |
|
93 |
### Framework versions
|
94 |
|
95 |
-
- Transformers 4.
|
96 |
- Pytorch 1.13.1+cu116
|
97 |
-
- Datasets 2.
|
98 |
- Tokenizers 0.13.2
|
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
+
value: 0.7958904109589041
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
+
value: 0.7803895231699127
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
+
value: 0.7880637504238724
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
+
value: 0.9450776825903877
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
43 |
|
44 |
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lg-ner dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.2863
|
47 |
+
- Precision: 0.7959
|
48 |
+
- Recall: 0.7804
|
49 |
+
- F1: 0.7881
|
50 |
+
- Accuracy: 0.9451
|
51 |
|
52 |
## Model description
|
53 |
|
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| No log | 1.0 | 261 | 0.5454 | 0.4946 | 0.2471 | 0.3296 | 0.8597 |
|
82 |
+
| 0.6168 | 2.0 | 522 | 0.3598 | 0.6993 | 0.5608 | 0.6224 | 0.9078 |
|
83 |
+
| 0.6168 | 3.0 | 783 | 0.3842 | 0.6326 | 0.6696 | 0.6506 | 0.8941 |
|
84 |
+
| 0.2599 | 4.0 | 1044 | 0.2755 | 0.7857 | 0.6870 | 0.7331 | 0.9333 |
|
85 |
+
| 0.2599 | 5.0 | 1305 | 0.2642 | 0.8019 | 0.7206 | 0.7591 | 0.9351 |
|
86 |
+
| 0.1498 | 6.0 | 1566 | 0.2755 | 0.7886 | 0.7589 | 0.7734 | 0.9385 |
|
87 |
+
| 0.1498 | 7.0 | 1827 | 0.2601 | 0.7945 | 0.7609 | 0.7774 | 0.9458 |
|
88 |
+
| 0.1023 | 8.0 | 2088 | 0.2889 | 0.7875 | 0.7717 | 0.7795 | 0.9409 |
|
89 |
+
| 0.1023 | 9.0 | 2349 | 0.2819 | 0.8082 | 0.7670 | 0.7870 | 0.9460 |
|
90 |
+
| 0.0716 | 10.0 | 2610 | 0.2863 | 0.7959 | 0.7804 | 0.7881 | 0.9451 |
|
91 |
|
92 |
|
93 |
### Framework versions
|
94 |
|
95 |
+
- Transformers 4.27.4
|
96 |
- Pytorch 1.13.1+cu116
|
97 |
+
- Datasets 2.11.0
|
98 |
- Tokenizers 0.13.2
|