--- license: mit tags: - generated_from_trainer datasets: - lg-ner metrics: - precision - recall - f1 - accuracy model-index: - name: luganda-ner-v1 results: - task: name: Token Classification type: token-classification dataset: name: lg-ner type: lg-ner config: lug split: test args: lug metrics: - name: Precision type: precision value: 0.7532580364900087 - name: Recall type: recall value: 0.7416595380667237 - name: F1 type: f1 value: 0.7474137931034481 - name: Accuracy type: accuracy value: 0.9492845117845118 --- # luganda-ner-v1 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lg-ner dataset. It achieves the following results on the evaluation set: - Loss: 0.2432 - Precision: 0.7533 - Recall: 0.7417 - F1: 0.7474 - Accuracy: 0.9493 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 261 | 0.3950 | 0.5892 | 0.4380 | 0.5025 | 0.9104 | | 0.5722 | 2.0 | 522 | 0.2869 | 0.6306 | 0.6484 | 0.6394 | 0.9311 | | 0.5722 | 3.0 | 783 | 0.2300 | 0.7047 | 0.6758 | 0.6900 | 0.9452 | | 0.2424 | 4.0 | 1044 | 0.2293 | 0.6793 | 0.7340 | 0.7056 | 0.9426 | | 0.2424 | 5.0 | 1305 | 0.2208 | 0.7952 | 0.7074 | 0.7488 | 0.9497 | | 0.1564 | 6.0 | 1566 | 0.2345 | 0.7104 | 0.7408 | 0.7253 | 0.9447 | | 0.1564 | 7.0 | 1827 | 0.2312 | 0.6956 | 0.7605 | 0.7266 | 0.9456 | | 0.112 | 8.0 | 2088 | 0.2404 | 0.7673 | 0.7417 | 0.7542 | 0.9500 | | 0.112 | 9.0 | 2349 | 0.2303 | 0.7698 | 0.7553 | 0.7625 | 0.9531 | | 0.0879 | 10.0 | 2610 | 0.2432 | 0.7533 | 0.7417 | 0.7474 | 0.9493 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2