File size: 8,620 Bytes
6dcc429
 
 
 
 
 
7143262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
160d8e0
1c3c5e2
7143262
 
 
6dcc429
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
---
license: cc
base_model:
- MCG-NJU/videomae-base
- MCG-NJU/videomae-large
---
# MARLIN: Masked Autoencoder for facial video Representation LearnINg

This repo is the official PyTorch implementation for the paper 
[MARLIN: Masked Autoencoder for facial video Representation LearnINg](https://openaccess.thecvf.com/content/CVPR2023/html/Cai_MARLIN_Masked_Autoencoder_for_Facial_Video_Representation_LearnINg_CVPR_2023_paper) (CVPR 2023).

## Repository Structure

The repository contains 2 parts:
 - `marlin-pytorch`: The PyPI package for MARLIN used for inference.
 - The implementation for the paper including training and evaluation scripts.

```
.
β”œβ”€β”€ assets                # Images for README.md
β”œβ”€β”€ LICENSE
β”œβ”€β”€ README.md
β”œβ”€β”€ MODEL_ZOO.md
β”œβ”€β”€ CITATION.cff
β”œβ”€β”€ .gitignore
β”œβ”€β”€ .github

# below is for the PyPI package marlin-pytorch
β”œβ”€β”€ src                   # Source code for marlin-pytorch
β”œβ”€β”€ tests                 # Unittest
β”œβ”€β”€ requirements.lib.txt
β”œβ”€β”€ setup.py
β”œβ”€β”€ init.py
β”œβ”€β”€ version.txt

# below is for the paper implementation
β”œβ”€β”€ configs              # Configs for experiments settings
β”œβ”€β”€ model                # Marlin models
β”œβ”€β”€ preprocess           # Preprocessing scripts
β”œβ”€β”€ dataset              # Dataloaders
β”œβ”€β”€ utils                # Utility functions
β”œβ”€β”€ train.py             # Training script
β”œβ”€β”€ evaluate.py          # Evaluation script
β”œβ”€β”€ requirements.txt

```

## Use `marlin-pytorch` for Feature Extraction

Requirements:
- Python >= 3.6, < 3.12
- PyTorch >= 1.8
- ffmpeg


Install from PyPI:
```bash
pip install marlin-pytorch
```

Load MARLIN model from online
```python
from marlin_pytorch import Marlin
# Load MARLIN model from GitHub Release
model = Marlin.from_online("marlin_vit_base_ytf")
```

Load MARLIN model from file
```python
from marlin_pytorch import Marlin
# Load MARLIN model from local file
model = Marlin.from_file("marlin_vit_base_ytf", "path/to/marlin.pt")
# Load MARLIN model from the ckpt file trained by the scripts in this repo
model = Marlin.from_file("marlin_vit_base_ytf", "path/to/marlin.ckpt")
```

Current model name list:
- `marlin_vit_small_ytf`: ViT-small encoder trained on YTF dataset. Embedding 384 dim.
- `marlin_vit_base_ytf`: ViT-base encoder trained on YTF dataset. Embedding 768 dim.
- `marlin_vit_large_ytf`: ViT-large encoder trained on YTF dataset. Embedding 1024 dim.

For more details, see [MODEL_ZOO.md](MODEL_ZOO.md).

When MARLIN model is retrieved from GitHub Release, it will be cached in `.marlin`. You can remove marlin cache by
```python
from marlin_pytorch import Marlin
Marlin.clean_cache()
```

Extract features from cropped video file
```python
# Extract features from facial cropped video with size (224x224)
features = model.extract_video("path/to/video.mp4")
print(features.shape)  # torch.Size([T, 768]) where T is the number of windows

# You can keep output of all elements from the sequence by setting keep_seq=True
features = model.extract_video("path/to/video.mp4", keep_seq=True)
print(features.shape)  # torch.Size([T, k, 768]) where k = T/t * H/h * W/w = 8 * 14 * 14 = 1568
```

Extract features from in-the-wild video file
```python
# Extract features from in-the-wild video with various size
features = model.extract_video("path/to/video.mp4", crop_face=True)
print(features.shape)  # torch.Size([T, 768])
```

Extract features from video clip tensor
```python
# Extract features from clip tensor with size (B, 3, 16, 224, 224)
x = ...  # video clip
features = model.extract_features(x)  # torch.Size([B, k, 768])
features = model.extract_features(x, keep_seq=False)  # torch.Size([B, 768])
```

## Paper Implementation

### Requirements
- Python >= 3.7, < 3.12
- PyTorch ~= 1.11
- Torchvision ~= 0.12

### Installation

Firstly, make sure you have installed PyTorch and Torchvision with or without CUDA. 

Clone the repo and install the requirements:
```bash
git clone https://github.com/ControlNet/MARLIN.git
cd MARLIN
pip install -r requirements.txt
```

### MARLIN Pretraining

Download the [YoutubeFaces](https://www.cs.tau.ac.il/~wolf/ytfaces/) dataset (only `frame_images_DB` is required). 

Download the face parsing model from [face_parsing.farl.lapa](https://github.com/FacePerceiver/facer/releases/download/models-v1/face_parsing.farl.lapa.main_ema_136500_jit191.pt)
and put it in `utils/face_sdk/models/face_parsing/face_parsing_1.0`.

Download the VideoMAE pretrained [checkpoint](https://github.com/ControlNet/MARLIN/releases/misc) 
for initializing the weights. (ps. They updated their models in this 
[commit](https://github.com/MCG-NJU/VideoMAE/commit/2b56a75d166c619f71019e3d1bb1c4aedafe7a90), but we are using the 
old models which are not shared anymore by the authors. So we uploaded this model by ourselves.)

Then run scripts to process the dataset:
```bash
python preprocess/ytf_preprocess.py --data_dir /path/to/youtube_faces --max_workers 8
```
After processing, the directory structure should be like this:
```
β”œβ”€β”€ YoutubeFaces
β”‚   β”œβ”€β”€ frame_images_DB
β”‚   β”‚   β”œβ”€β”€ Aaron_Eckhart
β”‚   β”‚   β”‚   β”œβ”€β”€ 0
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 0.555.jpg
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”œβ”€β”€ crop_images_DB
β”‚   β”‚   β”œβ”€β”€ Aaron_Eckhart
β”‚   β”‚   β”‚   β”œβ”€β”€ 0
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 0.555.jpg
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”œβ”€β”€ face_parsing_images_DB
β”‚   β”‚   β”œβ”€β”€ Aaron_Eckhart
β”‚   β”‚   β”‚   β”œβ”€β”€ 0
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 0.555.npy
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”œβ”€β”€ train_set.csv
β”‚   β”œβ”€β”€ val_set.csv
```

Then, run the training script:
```bash
python train.py \
    --config config/pretrain/marlin_vit_base.yaml \
    --data_dir /path/to/youtube_faces \
    --n_gpus 4 \
    --num_workers 8 \
    --batch_size 16 \
    --epochs 2000 \
    --official_pretrained /path/to/videomae/checkpoint.pth
```

After trained, you can load the checkpoint for inference by

```python
from marlin_pytorch import Marlin
from marlin_pytorch.config import register_model_from_yaml

register_model_from_yaml("my_marlin_model", "path/to/config.yaml")
model = Marlin.from_file("my_marlin_model", "path/to/marlin.ckpt")
```

## Evaluation

<details>
<summary>CelebV-HQ</summary>

#### 1. Download the dataset
Download dataset from [CelebV-HQ](https://github.com/CelebV-HQ/CelebV-HQ) and the file structure should be like this:
```
β”œβ”€β”€ CelebV-HQ
β”‚   β”œβ”€β”€ downloaded
β”‚   β”‚   β”œβ”€β”€ ***.mp4
β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”œβ”€β”€ celebvhq_info.json
β”‚   β”œβ”€β”€ ...
```
#### 2. Preprocess the dataset
Crop the face region from the raw video and split the train val and test sets.
```bash
python preprocess/celebvhq_preprocess.py --data_dir /path/to/CelebV-HQ 
```

#### 3. Extract MARLIN features (Optional, if linear probing)
Extract MARLIN features from the cropped video and saved to `<backbone>` directory in `CelebV-HQ` directory.
```bash
python preprocess/celebvhq_extract.py --data_dir /path/to/CelebV-HQ --backbone marlin_vit_base_ytf
```

#### 4. Train and evaluate
Train and evaluate the model adapted from MARLIN to CelebV-HQ.

Please use the configs in `config/celebv_hq/*/*.yaml` as the config file.
```bash
python evaluate.py \
    --config /path/to/config \
    --data_path /path/to/CelebV-HQ 
    --num_workers 4 
    --batch_size 16
```

</details>


## License

This project is under the CC BY-NC 4.0 license. See [LICENSE](LICENSE) for details.

## References
If you find this work useful for your research, please consider citing it.
```bibtex
@inproceedings{cai2022marlin,
  title = {MARLIN: Masked Autoencoder for facial video Representation LearnINg},
  author = {Cai, Zhixi and Ghosh, Shreya and Stefanov, Kalin and Dhall, Abhinav and Cai, Jianfei and Rezatofighi, Hamid and Haffari, Reza and Hayat, Munawar},
  booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2023},
  month = {June},
  pages = {1493-1504},
  doi = {10.1109/CVPR52729.2023.00150},
  publisher = {IEEE},
}
```

The arxiv version available: https://arxiv.org/abs/2211.06627

## Acknowledgements

Some code about model is based on [MCG-NJU/VideoMAE](https://github.com/MCG-NJU/VideoMAE). The code related to preprocessing
is borrowed from [JDAI-CV/FaceX-Zoo](https://github.com/JDAI-CV/FaceX-Zoo).