Commit
·
f6a7198
1
Parent(s):
7b1b09c
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1287.07 +/- 379.03
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d66512ab7cc3e72a10589c167074ef0aa8fd20bf8e94da5ca82961def6fecf33
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5956ee3550>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5956ee35e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5956ee3670>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5956ee3700>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5956ee3790>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5956ee3820>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5956ee38b0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5956ee3940>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5956ee39d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5956ee3a60>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5956ee3af0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5956ee3b80>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f5956ee0480>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1674413205888277368,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADUPkD/z4N++gLncPh+/tj9Haaa892WPPV2qoT9NNKW/5puwPiJKqb72Ae6+fBeKP0K08j7tiyC/4IMRvzs4YL9OGlg/QCF/v/N+DD+Yff09Qh5HvxC83D03ttE+GzByvwyenb/LWwM/oULfv/tMXz/H2lS/vsVPPmCpIT/C2L0/tfAXwOnC7L2CWu8+5m17Pj+2cj/vziW+SoN4vuG66L+5oYy/dKA2P8udKrqIys8/7fxav2Jz4z2ffjE/nw+tvvvlRb9tI/k8iugPv0AWKD9Y5U8/y1sDPzjFEj/7TF8/35Unv4QfEL9FoLM+j5XUPnb8J78rk62+9DGbP/ZipT7Cs08/zDhVQEdhGz8SmMI8naeDv1XZ6T8gAFC/nxyIPt8KV79yNTQ/nORBP6GlFkBy+ow/6i44PxNWPb9YuE4/WOVPP8tbAz84xRI/a76SvzVhEj+gEIi/GfUVvvBn6z+3SjHAd5ljPaYeND/DMia/E/NwP3sitb0TpJ0/6ibnvx5Og789czE/TR1nv7KIwD9QT2m/5colvophOT9l5RW8HszxvcH0uD4A4tm+JIvWP1jlTz/LWwM/oULfv2u+kr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAsOuE1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA7P/dvAAAAAAOBvK/AAAAAO6a2r0AAAAAUgfwPwAAAABHfRY9AAAAAF2z2z8AAAAAc63xvQAAAADn2va/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdSINtwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNY4lz0AAAAA1GH1vwAAAADYvaq9AAAAAA5E+j8AAAAA+7DfvQAAAAADpPg/AAAAAB8gvj0AAAAAfjjnvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAS+mrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIARZqa9AAAAAIr4+L8AAAAA1/IuuwAAAADPDfA/AAAAAJirTr0AAAAAi1X7PwAAAACuEJs9AAAAADal/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADjnz81AACAPwAAAAAAAAAAAAAAAAAAAAAAAACArSSZPQAAAABqygDAAAAAACkt2T0AAAAAbcTxPwAAAABch5A9AAAAALct/z8AAAAAQqSUPQAAAAAeVty/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIkZqSmqHXWMAWyUTegDjAF0lEdApsIE8A7xNXV9lChoBkdAiLdDq4YrKGgHTegDaAhHQKbKGbR4QjF1fZQoaAZHQI7tDMs6JZZoB03oA2gIR0CmyqWAXl8xdX2UKGgGR0CMc1vRZ2ZBaAdN6ANoCEdApsuj9jwx33V9lChoBkdAj27v7WNFSmgHTegDaAhHQKbN13iaRZF1fZQoaAZHQInrWm3vx6RoB03oA2gIR0Cm1fUpVjqfdX2UKGgGR0CUlL2oNutPaAdN6ANoCEdAptaAIv8IiXV9lChoBkdAju/24EwFkmgHTegDaAhHQKbXgXN1QqJ1fZQoaAZHQJLq/MV1wHZoB03oA2gIR0Cm2bZCOWB0dX2UKGgGR0CNTl0nw5NoaAdN6ANoCEdApuHMGxD9fnV9lChoBkdAjEp6zE74jGgHTegDaAhHQKbiU+TNdJJ1fZQoaAZHQIeQU5MlC1JoB03oA2gIR0Cm40VJ17pndX2UKGgGR0CUcYAEMb3oaAdN6ANoCEdApuVtSsKb8XV9lChoBkdAh+ZMXaakRGgHTegDaAhHQKbtYWFev6l1fZQoaAZHQJErBP9DQZ5oB03oA2gIR0Cm7ekd/8VIdX2UKGgGR0CJ8e/qxC6ZaAdN6ANoCEdApu7i3ocJdHV9lChoBkdAijeGcnVoYmgHTegDaAhHQKbxAmDUVi51fZQoaAZHQJJYCScLBsRoB03oA2gIR0Cm+RjiOvMbdX2UKGgGR0CP32G6f8MvaAdN6ANoCEdApvmhztCzC3V9lChoBkdAk7ODMaCL/GgHTegDaAhHQKb6oKjzqbB1fZQoaAZHQJQZMulGgBdoB03oA2gIR0Cm/PzGgi/xdX2UKGgGR0CL6qqBmPHUaAdN6ANoCEdApwUt8VpKz3V9lChoBkdAhxZxVZLZjGgHTegDaAhHQKcFvT7VJ+V1fZQoaAZHQJT30BQvYe1oB03oA2gIR0CnBsU65oXbdX2UKGgGR0CVAwssg+yJaAdN6ANoCEdApwj4v38GcHV9lChoBkdAhkFW+wkgOmgHTegDaAhHQKcRGB8x9G91fZQoaAZHQJJYnJFLFn9oB03oA2gIR0CnEagxSHdodX2UKGgGR0CE+8rPMSsbaAdN6ANoCEdApxKreQ+2VnV9lChoBkdAjPe3DvVmSWgHTegDaAhHQKcU1V9Wp611fZQoaAZHQJBXdeBxxT9oB03oA2gIR0CnHPRujynUdX2UKGgGR0CHjsMlTm4iaAdN6ANoCEdApx2AlfJFLHV9lChoBkdAhGJjfvWpZWgHTegDaAhHQKcefDCxeLN1fZQoaAZHQIw7ZYxL0z1oB03oA2gIR0CnILXo1UEQdX2UKGgGR0CKMo1rIo3KaAdN6ANoCEdApyjjBqKxcHV9lChoBkdAjRhO3UhFE2gHTegDaAhHQKcpbPWxyGV1fZQoaAZHQJEwADcM3IdoB03oA2gIR0CnKmjmbLEDdX2UKGgGR0CPe1ct5D7ZaAdN6ANoCEdApyyYQHzH0nV9lChoBkdAjh8swL3K0WgHTegDaAhHQKc0tVjqfOF1fZQoaAZHQI28fEl3QldoB03oA2gIR0CnNUH4XXRPdX2UKGgGR0CMdUz6ab4KaAdN6ANoCEdApzY5Xp4bCXV9lChoBkdAkOAqF7D2rWgHTegDaAhHQKc4go6S1Vp1fZQoaAZHQIw8CziS7oVoB03oA2gIR0CnQJIwEhaDdX2UKGgGR0CNf5Xr+o9+aAdN6ANoCEdAp0EfMjeKsXV9lChoBkdAjpt8K5TZQGgHTegDaAhHQKdCF+lTFVF1fZQoaAZHQIzdbu8brC5oB03oA2gIR0CnREUcwQDndX2UKGgGR0COarDrJKaoaAdN6ANoCEdAp0xdE/jbSXV9lChoBkdAliF8GLUCrGgHTegDaAhHQKdM5zErGzd1fZQoaAZHQI1+hNbkfcNoB03oA2gIR0CnTe6JAMUidX2UKGgGR0CEL+/SpiqiaAdN6ANoCEdAp1AYKF7D23V9lChoBkdAhTZx8D0UXmgHTegDaAhHQKdYTnDiwSt1fZQoaAZHQIyTEYfnwG5oB03oA2gIR0CnWNjiXIEKdX2UKGgGR0CMpg+W4Vh1aAdN6ANoCEdAp1nZFw1iv3V9lChoBkdAisKJkwvg32gHTegDaAhHQKdb/sguAZt1fZQoaAZHQITeZ4W1twdoB03oA2gIR0CnZB2BreqJdX2UKGgGR0CFByFBY3efaAdN6ANoCEdAp2Sj/Ot4iXV9lChoBkdAfK6zvJA+p2gHTegDaAhHQKdlnbMX7+F1fZQoaAZHQIceCkAPuohoB03oA2gIR0CnZ8mE4//vdX2UKGgGR0CIgYrQPZqVaAdN6ANoCEdAp2/pRl6JInV9lChoBkdAibJOEdvKl2gHTegDaAhHQKdwcpnYg7p1fZQoaAZHQIzvrI7vG6xoB03oA2gIR0CncWvZIxxldX2UKGgGR0CTmYyhBZ6laAdN6ANoCEdAp3OQ1BMSK3V9lChoBkdAjxFd2xIJ7mgHTegDaAhHQKd72zt1IRR1fZQoaAZHQI67U9Mbm2doB03oA2gIR0CnfG2fTTfBdX2UKGgGR0CRsGkwvg3taAdN6ANoCEdAp31nYlIEsHV9lChoBkdAjDEhFmWdE2gHTegDaAhHQKd/jdZ7ojh1fZQoaAZHQI39aoCMglpoB03oA2gIR0Cnh6cF6iTMdX2UKGgGR0CS11B6KLsKaAdN6ANoCEdAp4gw5o4+83V9lChoBkdAiyFYJmdy1mgHTegDaAhHQKeJLEd/8VJ1fZQoaAZHQJTY8wblzU9oB03oA2gIR0Cni1dycTakdX2UKGgGR0CJ9MOMERraaAdN6ANoCEdAp5OHr8iwCHV9lChoBkdAi5LHIQvpQmgHTegDaAhHQKeUFWBjFyd1fZQoaAZHQJHxOCZnctZoB03oA2gIR0CnlRixFAmidX2UKGgGR0CGHgYlY2bYaAdN6ANoCEdAp5dIHAymAXV9lChoBkdAi+2eTFERa2gHTegDaAhHQKefZV2A5Jd1fZQoaAZHQJbxGZG8VYZoB03oA2gIR0Cnn+xqGlANdX2UKGgGR0CZjl1stTUBaAdN6ANoCEdAp6Dlo11nunV9lChoBkdAkZbQ6ZH/cWgHTegDaAhHQKejD2fTTfB1fZQoaAZHQJDfmhcqvvBoB03oA2gIR0CnqyQg9vCNdX2UKGgGR0CSiBAMlTm5aAdN6ANoCEdAp6uplrdnCnV9lChoBkdAlQ6Wd7OVxGgHTegDaAhHQKesnj+717J1fZQoaAZHQJg71sLv1DloB03oA2gIR0CnrsaSLZSOdX2UKGgGR0CSb9/TLGJfaAdN6ANoCEdAp7bfq9oN/nV9lChoBkdAmp/vhybQTmgHTegDaAhHQKe3an4wh4d1fZQoaAZHQJqaHAGjbi9oB03oA2gIR0CnuF4wIt17dX2UKGgGR0CZRyfUnXumaAdN6ANoCEdAp7qLw2ETQHV9lChoBkdAk21cL8aXKWgHTegDaAhHQKfCsLmZE2J1fZQoaAZHQJi39vfj0cxoB03oA2gIR0CnwzUJF9a2dX2UKGgGR0CaOm6YE4ecaAdN6ANoCEdAp8QzLOiWV3V9lChoBkdAl2a9FWn0kGgHTegDaAhHQKfGZCZ4Oc51fZQoaAZHQJPVFdmg8KZoB03oA2gIR0CnzoZZB9kSdX2UKGgGR0CYqirI5o4/aAdN6ANoCEdAp88S+i8Fp3V9lChoBkdAktDD+zdDY2gHTegDaAhHQKfQEqMm4RV1fZQoaAZHQJJuiXMQmNRoB03oA2gIR0Cn0j4Z2pyZdX2UKGgGR0CXVl+4smOVaAdN6ANoCEdAp9prh73PA3V9lChoBkdAiwxzsY2sJmgHTegDaAhHQKfa+GnGbTd1fZQoaAZHQJFe6ur6tT1oB03oA2gIR0Cn2++fAbhndX2UKGgGR0CXJJuTzND/aAdN6ANoCEdAp94XMyJsPHV9lChoBkdAlQQDEehf0GgHTegDaAhHQKfmQ2nbZe11fZQoaAZHQJgtceDFqBVoB03oA2gIR0Cn5s34j8k2dX2UKGgGR0CcCj/nnuAqaAdN6ANoCEdAp+fFoBaLXXVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f211b577df952ac2f13e4921c72270493f5135fdd787eabd40f7f36823bc03d
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4af3c0ef2feccb1222f20f5e1637dff57dc31d5c4ae2ec28c8ca76f8d496049
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5956ee3550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5956ee35e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5956ee3670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5956ee3700>", "_build": "<function ActorCriticPolicy._build at 0x7f5956ee3790>", "forward": "<function ActorCriticPolicy.forward at 0x7f5956ee3820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5956ee38b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5956ee3940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5956ee39d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5956ee3a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5956ee3af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5956ee3b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5956ee0480>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674413205888277368, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADUPkD/z4N++gLncPh+/tj9Haaa892WPPV2qoT9NNKW/5puwPiJKqb72Ae6+fBeKP0K08j7tiyC/4IMRvzs4YL9OGlg/QCF/v/N+DD+Yff09Qh5HvxC83D03ttE+GzByvwyenb/LWwM/oULfv/tMXz/H2lS/vsVPPmCpIT/C2L0/tfAXwOnC7L2CWu8+5m17Pj+2cj/vziW+SoN4vuG66L+5oYy/dKA2P8udKrqIys8/7fxav2Jz4z2ffjE/nw+tvvvlRb9tI/k8iugPv0AWKD9Y5U8/y1sDPzjFEj/7TF8/35Unv4QfEL9FoLM+j5XUPnb8J78rk62+9DGbP/ZipT7Cs08/zDhVQEdhGz8SmMI8naeDv1XZ6T8gAFC/nxyIPt8KV79yNTQ/nORBP6GlFkBy+ow/6i44PxNWPb9YuE4/WOVPP8tbAz84xRI/a76SvzVhEj+gEIi/GfUVvvBn6z+3SjHAd5ljPaYeND/DMia/E/NwP3sitb0TpJ0/6ibnvx5Og789czE/TR1nv7KIwD9QT2m/5colvophOT9l5RW8HszxvcH0uD4A4tm+JIvWP1jlTz/LWwM/oULfv2u+kr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAsOuE1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA7P/dvAAAAAAOBvK/AAAAAO6a2r0AAAAAUgfwPwAAAABHfRY9AAAAAF2z2z8AAAAAc63xvQAAAADn2va/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdSINtwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNY4lz0AAAAA1GH1vwAAAADYvaq9AAAAAA5E+j8AAAAA+7DfvQAAAAADpPg/AAAAAB8gvj0AAAAAfjjnvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAS+mrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIARZqa9AAAAAIr4+L8AAAAA1/IuuwAAAADPDfA/AAAAAJirTr0AAAAAi1X7PwAAAACuEJs9AAAAADal/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADjnz81AACAPwAAAAAAAAAAAAAAAAAAAAAAAACArSSZPQAAAABqygDAAAAAACkt2T0AAAAAbcTxPwAAAABch5A9AAAAALct/z8AAAAAQqSUPQAAAAAeVty/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIkZqSmqHXWMAWyUTegDjAF0lEdApsIE8A7xNXV9lChoBkdAiLdDq4YrKGgHTegDaAhHQKbKGbR4QjF1fZQoaAZHQI7tDMs6JZZoB03oA2gIR0CmyqWAXl8xdX2UKGgGR0CMc1vRZ2ZBaAdN6ANoCEdApsuj9jwx33V9lChoBkdAj27v7WNFSmgHTegDaAhHQKbN13iaRZF1fZQoaAZHQInrWm3vx6RoB03oA2gIR0Cm1fUpVjqfdX2UKGgGR0CUlL2oNutPaAdN6ANoCEdAptaAIv8IiXV9lChoBkdAju/24EwFkmgHTegDaAhHQKbXgXN1QqJ1fZQoaAZHQJLq/MV1wHZoB03oA2gIR0Cm2bZCOWB0dX2UKGgGR0CNTl0nw5NoaAdN6ANoCEdApuHMGxD9fnV9lChoBkdAjEp6zE74jGgHTegDaAhHQKbiU+TNdJJ1fZQoaAZHQIeQU5MlC1JoB03oA2gIR0Cm40VJ17pndX2UKGgGR0CUcYAEMb3oaAdN6ANoCEdApuVtSsKb8XV9lChoBkdAh+ZMXaakRGgHTegDaAhHQKbtYWFev6l1fZQoaAZHQJErBP9DQZ5oB03oA2gIR0Cm7ekd/8VIdX2UKGgGR0CJ8e/qxC6ZaAdN6ANoCEdApu7i3ocJdHV9lChoBkdAijeGcnVoYmgHTegDaAhHQKbxAmDUVi51fZQoaAZHQJJYCScLBsRoB03oA2gIR0Cm+RjiOvMbdX2UKGgGR0CP32G6f8MvaAdN6ANoCEdApvmhztCzC3V9lChoBkdAk7ODMaCL/GgHTegDaAhHQKb6oKjzqbB1fZQoaAZHQJQZMulGgBdoB03oA2gIR0Cm/PzGgi/xdX2UKGgGR0CL6qqBmPHUaAdN6ANoCEdApwUt8VpKz3V9lChoBkdAhxZxVZLZjGgHTegDaAhHQKcFvT7VJ+V1fZQoaAZHQJT30BQvYe1oB03oA2gIR0CnBsU65oXbdX2UKGgGR0CVAwssg+yJaAdN6ANoCEdApwj4v38GcHV9lChoBkdAhkFW+wkgOmgHTegDaAhHQKcRGB8x9G91fZQoaAZHQJJYnJFLFn9oB03oA2gIR0CnEagxSHdodX2UKGgGR0CE+8rPMSsbaAdN6ANoCEdApxKreQ+2VnV9lChoBkdAjPe3DvVmSWgHTegDaAhHQKcU1V9Wp611fZQoaAZHQJBXdeBxxT9oB03oA2gIR0CnHPRujynUdX2UKGgGR0CHjsMlTm4iaAdN6ANoCEdApx2AlfJFLHV9lChoBkdAhGJjfvWpZWgHTegDaAhHQKcefDCxeLN1fZQoaAZHQIw7ZYxL0z1oB03oA2gIR0CnILXo1UEQdX2UKGgGR0CKMo1rIo3KaAdN6ANoCEdApyjjBqKxcHV9lChoBkdAjRhO3UhFE2gHTegDaAhHQKcpbPWxyGV1fZQoaAZHQJEwADcM3IdoB03oA2gIR0CnKmjmbLEDdX2UKGgGR0CPe1ct5D7ZaAdN6ANoCEdApyyYQHzH0nV9lChoBkdAjh8swL3K0WgHTegDaAhHQKc0tVjqfOF1fZQoaAZHQI28fEl3QldoB03oA2gIR0CnNUH4XXRPdX2UKGgGR0CMdUz6ab4KaAdN6ANoCEdApzY5Xp4bCXV9lChoBkdAkOAqF7D2rWgHTegDaAhHQKc4go6S1Vp1fZQoaAZHQIw8CziS7oVoB03oA2gIR0CnQJIwEhaDdX2UKGgGR0CNf5Xr+o9+aAdN6ANoCEdAp0EfMjeKsXV9lChoBkdAjpt8K5TZQGgHTegDaAhHQKdCF+lTFVF1fZQoaAZHQIzdbu8brC5oB03oA2gIR0CnREUcwQDndX2UKGgGR0COarDrJKaoaAdN6ANoCEdAp0xdE/jbSXV9lChoBkdAliF8GLUCrGgHTegDaAhHQKdM5zErGzd1fZQoaAZHQI1+hNbkfcNoB03oA2gIR0CnTe6JAMUidX2UKGgGR0CEL+/SpiqiaAdN6ANoCEdAp1AYKF7D23V9lChoBkdAhTZx8D0UXmgHTegDaAhHQKdYTnDiwSt1fZQoaAZHQIyTEYfnwG5oB03oA2gIR0CnWNjiXIEKdX2UKGgGR0CMpg+W4Vh1aAdN6ANoCEdAp1nZFw1iv3V9lChoBkdAisKJkwvg32gHTegDaAhHQKdb/sguAZt1fZQoaAZHQITeZ4W1twdoB03oA2gIR0CnZB2BreqJdX2UKGgGR0CFByFBY3efaAdN6ANoCEdAp2Sj/Ot4iXV9lChoBkdAfK6zvJA+p2gHTegDaAhHQKdlnbMX7+F1fZQoaAZHQIceCkAPuohoB03oA2gIR0CnZ8mE4//vdX2UKGgGR0CIgYrQPZqVaAdN6ANoCEdAp2/pRl6JInV9lChoBkdAibJOEdvKl2gHTegDaAhHQKdwcpnYg7p1fZQoaAZHQIzvrI7vG6xoB03oA2gIR0CncWvZIxxldX2UKGgGR0CTmYyhBZ6laAdN6ANoCEdAp3OQ1BMSK3V9lChoBkdAjxFd2xIJ7mgHTegDaAhHQKd72zt1IRR1fZQoaAZHQI67U9Mbm2doB03oA2gIR0CnfG2fTTfBdX2UKGgGR0CRsGkwvg3taAdN6ANoCEdAp31nYlIEsHV9lChoBkdAjDEhFmWdE2gHTegDaAhHQKd/jdZ7ojh1fZQoaAZHQI39aoCMglpoB03oA2gIR0Cnh6cF6iTMdX2UKGgGR0CS11B6KLsKaAdN6ANoCEdAp4gw5o4+83V9lChoBkdAiyFYJmdy1mgHTegDaAhHQKeJLEd/8VJ1fZQoaAZHQJTY8wblzU9oB03oA2gIR0Cni1dycTakdX2UKGgGR0CJ9MOMERraaAdN6ANoCEdAp5OHr8iwCHV9lChoBkdAi5LHIQvpQmgHTegDaAhHQKeUFWBjFyd1fZQoaAZHQJHxOCZnctZoB03oA2gIR0CnlRixFAmidX2UKGgGR0CGHgYlY2bYaAdN6ANoCEdAp5dIHAymAXV9lChoBkdAi+2eTFERa2gHTegDaAhHQKefZV2A5Jd1fZQoaAZHQJbxGZG8VYZoB03oA2gIR0Cnn+xqGlANdX2UKGgGR0CZjl1stTUBaAdN6ANoCEdAp6Dlo11nunV9lChoBkdAkZbQ6ZH/cWgHTegDaAhHQKejD2fTTfB1fZQoaAZHQJDfmhcqvvBoB03oA2gIR0CnqyQg9vCNdX2UKGgGR0CSiBAMlTm5aAdN6ANoCEdAp6uplrdnCnV9lChoBkdAlQ6Wd7OVxGgHTegDaAhHQKesnj+717J1fZQoaAZHQJg71sLv1DloB03oA2gIR0CnrsaSLZSOdX2UKGgGR0CSb9/TLGJfaAdN6ANoCEdAp7bfq9oN/nV9lChoBkdAmp/vhybQTmgHTegDaAhHQKe3an4wh4d1fZQoaAZHQJqaHAGjbi9oB03oA2gIR0CnuF4wIt17dX2UKGgGR0CZRyfUnXumaAdN6ANoCEdAp7qLw2ETQHV9lChoBkdAk21cL8aXKWgHTegDaAhHQKfCsLmZE2J1fZQoaAZHQJi39vfj0cxoB03oA2gIR0CnwzUJF9a2dX2UKGgGR0CaOm6YE4ecaAdN6ANoCEdAp8QzLOiWV3V9lChoBkdAl2a9FWn0kGgHTegDaAhHQKfGZCZ4Oc51fZQoaAZHQJPVFdmg8KZoB03oA2gIR0CnzoZZB9kSdX2UKGgGR0CYqirI5o4/aAdN6ANoCEdAp88S+i8Fp3V9lChoBkdAktDD+zdDY2gHTegDaAhHQKfQEqMm4RV1fZQoaAZHQJJuiXMQmNRoB03oA2gIR0Cn0j4Z2pyZdX2UKGgGR0CXVl+4smOVaAdN6ANoCEdAp9prh73PA3V9lChoBkdAiwxzsY2sJmgHTegDaAhHQKfa+GnGbTd1fZQoaAZHQJFe6ur6tT1oB03oA2gIR0Cn2++fAbhndX2UKGgGR0CXJJuTzND/aAdN6ANoCEdAp94XMyJsPHV9lChoBkdAlQQDEehf0GgHTegDaAhHQKfmQ2nbZe11fZQoaAZHQJgtceDFqBVoB03oA2gIR0Cn5s34j8k2dX2UKGgGR0CcCj/nnuAqaAdN6ANoCEdAp+fFoBaLXXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8bfa277ec69b8cb2c59f4c6838cd25ee390c4416fa931b8ab2136530ae4efb3b
|
3 |
+
size 1110918
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1287.0676094103037, "std_reward": 379.03366292753304, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T19:37:13.534501"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c12f11c11592ac4b14218ee69f7727f4f2a8aafe3d97a14c1aa0b46dd2afb2b6
|
3 |
+
size 2136
|