CoreyMorris
commited on
Commit
·
ecc4b3d
1
Parent(s):
b709653
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -4.24 +/- 1.03
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:844189b44199ebf4617198705755426b7b240788b8fb12e4df8ce50bee2fac02
|
3 |
+
size 108071
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f541ef3dca0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f541ef358d0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1673973177877772193,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAARlTyPuKAGD2dkh8/RlTyPuKAGD2dkh8/RlTyPuKAGD2dkh8/RlTyPuKAGD2dkh8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2beMvyHYt79PExG+enLMP58Pu7+cl8k/hJEFP4GMAb+JA0M/R3+YPqsplT+RJsm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABGVPI+4oAYPZ2SHz/K7Gk8LvgDOsyevzxGVPI+4oAYPZ2SHz/K7Gk8LvgDOsyevzxGVPI+4oAYPZ2SHz/K7Gk8LvgDOsyevzxGVPI+4oAYPZ2SHz/K7Gk8LvgDOsyevzyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.4732992 0.03723229 0.6233309 ]\n [0.4732992 0.03723229 0.6233309 ]\n [0.4732992 0.03723229 0.6233309 ]\n [0.4732992 0.03723229 0.6233309 ]]",
|
60 |
+
"desired_goal": "[[-1.0993606 -1.4362832 -0.14167522]\n [ 1.5972435 -1.4614142 1.5749393 ]\n [ 0.52175164 -0.50605017 0.7617727 ]\n [ 0.29784605 1.1653341 -1.5714895 ]]",
|
61 |
+
"observation": "[[4.7329921e-01 3.7232287e-02 6.2333089e-01 1.4277646e-02 5.0342351e-04\n 2.3391150e-02]\n [4.7329921e-01 3.7232287e-02 6.2333089e-01 1.4277646e-02 5.0342351e-04\n 2.3391150e-02]\n [4.7329921e-01 3.7232287e-02 6.2333089e-01 1.4277646e-02 5.0342351e-04\n 2.3391150e-02]\n [4.7329921e-01 3.7232287e-02 6.2333089e-01 1.4277646e-02 5.0342351e-04\n 2.3391150e-02]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAgficvLZ6171cDEk8avlQveftpL3nPOE8BYysvY9IGb7ItUQ9jLfDPNtR47wfgYc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.01916146 -0.10521452 0.01227101]\n [-0.05101911 -0.08053189 0.02749486]\n [-0.08425144 -0.14969085 0.04802492]\n [ 0.02389123 -0.02774899 0.06616425]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIp8tiYvMxFsCUhpRSlIwBbJRLMowBdJRHQKPFQ6asp5N1fZQoaAZoCWgPQwj4bB0c7G0EwJSGlFKUaBVLMmgWR0CjxQPIfbKzdX2UKGgGaAloD0MIacU3FD67DsCUhpRSlGgVSzJoFkdAo8TDl3hXKnV9lChoBmgJaA9DCG5oyk4/GBXAlIaUUpRoFUsyaBZHQKPEfzBAOax1fZQoaAZoCWgPQwiYv0LmyqALwJSGlFKUaBVLMmgWR0CjxkkDp1RtdX2UKGgGaAloD0MIJF8JpMQ+EcCUhpRSlGgVSzJoFkdAo8YI/C66KHV9lChoBmgJaA9DCKUV31D4DAvAlIaUUpRoFUsyaBZHQKPFyOskpqh1fZQoaAZoCWgPQwiAt0CC4mcNwJSGlFKUaBVLMmgWR0CjxYRwIdELdX2UKGgGaAloD0MIK6G7JM4KC8CUhpRSlGgVSzJoFkdAo8dUw1zhgnV9lChoBmgJaA9DCLSvPEhPoRXAlIaUUpRoFUsyaBZHQKPHFMotthx1fZQoaAZoCWgPQwg6yVaXU6INwJSGlFKUaBVLMmgWR0CjxtS/j81odX2UKGgGaAloD0MI88mK4eogDMCUhpRSlGgVSzJoFkdAo8aQbXHzYnV9lChoBmgJaA9DCB0ewvhpnAvAlIaUUpRoFUsyaBZHQKPIWRq46Op1fZQoaAZoCWgPQwiCOXr83uYXwJSGlFKUaBVLMmgWR0CjyBlAu7HydX2UKGgGaAloD0MIt/C8VGycEcCUhpRSlGgVSzJoFkdAo8fZMxoIwHV9lChoBmgJaA9DCIkHlE254hLAlIaUUpRoFUsyaBZHQKPHlN/vv0B1fZQoaAZoCWgPQwjhQh7BjZQPwJSGlFKUaBVLMmgWR0CjyVf0/W1/dX2UKGgGaAloD0MIKv2Es1vbEcCUhpRSlGgVSzJoFkdAo8kX8XN1Q3V9lChoBmgJaA9DCO+tSExQ0xXAlIaUUpRoFUsyaBZHQKPI16vaDf51fZQoaAZoCWgPQwiKHvgYrLgOwJSGlFKUaBVLMmgWR0CjyJMolUqAdX2UKGgGaAloD0MIe/fHe9WqDcCUhpRSlGgVSzJoFkdAo8pdPznRs3V9lChoBmgJaA9DCK5kx0YgXhLAlIaUUpRoFUsyaBZHQKPKHUEPlMh1fZQoaAZoCWgPQwiwV1hwP7ATwJSGlFKUaBVLMmgWR0Cjyd0qhDgJdX2UKGgGaAloD0MI5sqg2uDUEsCUhpRSlGgVSzJoFkdAo8mYtxuKoHV9lChoBmgJaA9DCNGUnX5QFwrAlIaUUpRoFUsyaBZHQKPLaXHBDXx1fZQoaAZoCWgPQwhE2zF1VwYQwJSGlFKUaBVLMmgWR0CjyymKQ7tBdX2UKGgGaAloD0MIHVn5ZTDGEcCUhpRSlGgVSzJoFkdAo8rpZ+x4ZHV9lChoBmgJaA9DCKK2DaMgiBDAlIaUUpRoFUsyaBZHQKPKpPw/gR91fZQoaAZoCWgPQwiJmBJJ9DIZwJSGlFKUaBVLMmgWR0CjzG8LKFIvdX2UKGgGaAloD0MIxTvAkxbuEMCUhpRSlGgVSzJoFkdAo8wvLLZBcHV9lChoBmgJaA9DCPuuCP63ohPAlIaUUpRoFUsyaBZHQKPL7vKlpGp1fZQoaAZoCWgPQwhuopbmVggCwJSGlFKUaBVLMmgWR0Cjy6p8neBQdX2UKGgGaAloD0MIJAnCFVAoEsCUhpRSlGgVSzJoFkdAo82Bu2qkunV9lChoBmgJaA9DCEgyq3e4fRPAlIaUUpRoFUsyaBZHQKPNQal1r7B1fZQoaAZoCWgPQwiW7UPecqUQwJSGlFKUaBVLMmgWR0CjzQGOlwcYdX2UKGgGaAloD0MIPL1SliGOE8CUhpRSlGgVSzJoFkdAo8y9oQFs6HV9lChoBmgJaA9DCI84ZAPpwh3AlIaUUpRoFUsyaBZHQKPOo/20zCV1fZQoaAZoCWgPQwjRWWYRii0UwJSGlFKUaBVLMmgWR0CjzmQpF1B/dX2UKGgGaAloD0MIsMivH2IDCsCUhpRSlGgVSzJoFkdAo84kLBsQ/XV9lChoBmgJaA9DCAMlBRbApBPAlIaUUpRoFUsyaBZHQKPN375VOsV1fZQoaAZoCWgPQwg+7fDXZI0RwJSGlFKUaBVLMmgWR0Cjz7soUi6hdX2UKGgGaAloD0MI26Z4XFT7EcCUhpRSlGgVSzJoFkdAo897LEDQq3V9lChoBmgJaA9DCLr0L0lluhfAlIaUUpRoFUsyaBZHQKPPOw4bS7Z1fZQoaAZoCWgPQwibkqzD0UUWwJSGlFKUaBVLMmgWR0Cjzvam4y44dX2UKGgGaAloD0MIHec24V4Z/L+UhpRSlGgVSzJoFkdAo9C+tCAtnXV9lChoBmgJaA9DCG7gDtQpLwrAlIaUUpRoFUsyaBZHQKPQfrUsnRd1fZQoaAZoCWgPQwilaybfbJMPwJSGlFKUaBVLMmgWR0Cj0D6eXiR5dX2UKGgGaAloD0MIXOMz2T/PEcCUhpRSlGgVSzJoFkdAo8/6E12q1nV9lChoBmgJaA9DCJHT1/M1SwTAlIaUUpRoFUsyaBZHQKPRvpKzzEt1fZQoaAZoCWgPQwgA5lq0AM0PwJSGlFKUaBVLMmgWR0Cj0X60hNdrdX2UKGgGaAloD0MIbHu7JTngDcCUhpRSlGgVSzJoFkdAo9E+m3vx6XV9lChoBmgJaA9DCETf3coSnRLAlIaUUpRoFUsyaBZHQKPQ+jQAuI11fZQoaAZoCWgPQwh5BaInZVIRwJSGlFKUaBVLMmgWR0Cj0rrC3w1BdX2UKGgGaAloD0MIsHQ+PEugEMCUhpRSlGgVSzJoFkdAo9J6qIacZ3V9lChoBmgJaA9DCK/uWGyTSg/AlIaUUpRoFUsyaBZHQKPSOrPt2LZ1fZQoaAZoCWgPQwgE5Euo4GARwJSGlFKUaBVLMmgWR0Cj0fYyoGY8dX2UKGgGaAloD0MICoDxDBoKEMCUhpRSlGgVSzJoFkdAo9PIJu2qk3V9lChoBmgJaA9DCJM4K6ImGhLAlIaUUpRoFUsyaBZHQKPTiIv8IiV1fZQoaAZoCWgPQwg0aOif4DIRwJSGlFKUaBVLMmgWR0Cj00iG34KydX2UKGgGaAloD0MIVaTC2EIwCMCUhpRSlGgVSzJoFkdAo9MEan7523V9lChoBmgJaA9DCLjJqDKMOwvAlIaUUpRoFUsyaBZHQKPU18ejmCB1fZQoaAZoCWgPQwhB1H0AUvsJwJSGlFKUaBVLMmgWR0Cj1JfOUt7KdX2UKGgGaAloD0MIC/FIvDyNFcCUhpRSlGgVSzJoFkdAo9RX+OwPiHV9lChoBmgJaA9DCHTtC+iFGwnAlIaUUpRoFUsyaBZHQKPUE4SYgJV1fZQoaAZoCWgPQwiY32ky400QwJSGlFKUaBVLMmgWR0Cj1fKLKmsOdX2UKGgGaAloD0MIRpiiXBrvEsCUhpRSlGgVSzJoFkdAo9WysQumJnV9lChoBmgJaA9DCAMn28AdWBbAlIaUUpRoFUsyaBZHQKPVcoc7yQR1fZQoaAZoCWgPQwivP4nPnWALwJSGlFKUaBVLMmgWR0Cj1S4M4LkTdX2UKGgGaAloD0MIQrKACdzKEsCUhpRSlGgVSzJoFkdAo9b7V4HHFXV9lChoBmgJaA9DCBmQvd79cQ7AlIaUUpRoFUsyaBZHQKPWu1rIo3J1fZQoaAZoCWgPQwgq4J7nT5sFwJSGlFKUaBVLMmgWR0Cj1nsiB5HFdX2UKGgGaAloD0MIu9OdJ56zCcCUhpRSlGgVSzJoFkdAo9Y21MM7VHV9lChoBmgJaA9DCEUpIVhV7wrAlIaUUpRoFUsyaBZHQKPYAzD4xlB1fZQoaAZoCWgPQwgb2gBsQIQQwJSGlFKUaBVLMmgWR0Cj18MBp5/tdX2UKGgGaAloD0MIrir7rgj+FMCUhpRSlGgVSzJoFkdAo9eC42CNCXV9lChoBmgJaA9DCByWBn5UAwXAlIaUUpRoFUsyaBZHQKPXPoUSIxh1fZQoaAZoCWgPQwiMuWsJ+WASwJSGlFKUaBVLMmgWR0Cj2QUkv9LpdX2UKGgGaAloD0MI9yLajqkbE8CUhpRSlGgVSzJoFkdAo9jE6gdwN3V9lChoBmgJaA9DCMnMBS6PVQ7AlIaUUpRoFUsyaBZHQKPYhIRRMvh1fZQoaAZoCWgPQwiEZWzoZp8PwJSGlFKUaBVLMmgWR0Cj2D/VqesgdX2UKGgGaAloD0MIyjUFMjs7EMCUhpRSlGgVSzJoFkdAo9ojbah6B3V9lChoBmgJaA9DCNQnucMm4hHAlIaUUpRoFUsyaBZHQKPZ411nuiN1fZQoaAZoCWgPQwiYFB+fkK0QwJSGlFKUaBVLMmgWR0Cj2aNDc/MXdX2UKGgGaAloD0MI36XUJePoEsCUhpRSlGgVSzJoFkdAo9lfctXgcnV9lChoBmgJaA9DCDSD+MCOvxDAlIaUUpRoFUsyaBZHQKPbJinYQJ51fZQoaAZoCWgPQwhXlX1XBD8WwJSGlFKUaBVLMmgWR0Cj2uY1xbSrdX2UKGgGaAloD0MIya8fYoN1EsCUhpRSlGgVSzJoFkdAo9qmBYmsvXV9lChoBmgJaA9DCLnF/NzQxBHAlIaUUpRoFUsyaBZHQKPaYZqEeyR1fZQoaAZoCWgPQwilZ3qJsewLwJSGlFKUaBVLMmgWR0Cj3CbGFSKndX2UKGgGaAloD0MIxLEubqMBB8CUhpRSlGgVSzJoFkdAo9vmvQnhKnV9lChoBmgJaA9DCA00n3O3GxHAlIaUUpRoFUsyaBZHQKPbpl+3H7x1fZQoaAZoCWgPQwjbaWtEMD4RwJSGlFKUaBVLMmgWR0Cj22Hq3VkMdX2UKGgGaAloD0MIpfYi2o4ZE8CUhpRSlGgVSzJoFkdAo900bYK6WnV9lChoBmgJaA9DCFERp5NsxRLAlIaUUpRoFUsyaBZHQKPc9Ge+VTt1fZQoaAZoCWgPQwi/8EqS53oOwJSGlFKUaBVLMmgWR0Cj3LRjJ+2FdX2UKGgGaAloD0MItHIvMCuUDsCUhpRSlGgVSzJoFkdAo9xv2GqPwXV9lChoBmgJaA9DCISfOIB+Xw3AlIaUUpRoFUsyaBZHQKPeS5MDfWN1fZQoaAZoCWgPQwgwmwDD8qcJwJSGlFKUaBVLMmgWR0Cj3guWSlnAdX2UKGgGaAloD0MIYi0+BcA4EcCUhpRSlGgVSzJoFkdAo93LK5kK/nV9lChoBmgJaA9DCGlSCrq9JBDAlIaUUpRoFUsyaBZHQKPdhq/ub7V1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bd5cb1cbdac9dfade1e2edda88e984fc957bc3f08afee6f7d11de11902eef3a
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f04e18f29da312bc3b03f6db598e29bffdafdeba5685d7da408ce94d67b464b6
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f541ef3dca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f541ef358d0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673973177877772193, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAARlTyPuKAGD2dkh8/RlTyPuKAGD2dkh8/RlTyPuKAGD2dkh8/RlTyPuKAGD2dkh8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2beMvyHYt79PExG+enLMP58Pu7+cl8k/hJEFP4GMAb+JA0M/R3+YPqsplT+RJsm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABGVPI+4oAYPZ2SHz/K7Gk8LvgDOsyevzxGVPI+4oAYPZ2SHz/K7Gk8LvgDOsyevzxGVPI+4oAYPZ2SHz/K7Gk8LvgDOsyevzxGVPI+4oAYPZ2SHz/K7Gk8LvgDOsyevzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4732992 0.03723229 0.6233309 ]\n [0.4732992 0.03723229 0.6233309 ]\n [0.4732992 0.03723229 0.6233309 ]\n [0.4732992 0.03723229 0.6233309 ]]", "desired_goal": "[[-1.0993606 -1.4362832 -0.14167522]\n [ 1.5972435 -1.4614142 1.5749393 ]\n [ 0.52175164 -0.50605017 0.7617727 ]\n [ 0.29784605 1.1653341 -1.5714895 ]]", "observation": "[[4.7329921e-01 3.7232287e-02 6.2333089e-01 1.4277646e-02 5.0342351e-04\n 2.3391150e-02]\n [4.7329921e-01 3.7232287e-02 6.2333089e-01 1.4277646e-02 5.0342351e-04\n 2.3391150e-02]\n [4.7329921e-01 3.7232287e-02 6.2333089e-01 1.4277646e-02 5.0342351e-04\n 2.3391150e-02]\n [4.7329921e-01 3.7232287e-02 6.2333089e-01 1.4277646e-02 5.0342351e-04\n 2.3391150e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAgficvLZ6171cDEk8avlQveftpL3nPOE8BYysvY9IGb7ItUQ9jLfDPNtR47wfgYc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.01916146 -0.10521452 0.01227101]\n [-0.05101911 -0.08053189 0.02749486]\n [-0.08425144 -0.14969085 0.04802492]\n [ 0.02389123 -0.02774899 0.06616425]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIp8tiYvMxFsCUhpRSlIwBbJRLMowBdJRHQKPFQ6asp5N1fZQoaAZoCWgPQwj4bB0c7G0EwJSGlFKUaBVLMmgWR0CjxQPIfbKzdX2UKGgGaAloD0MIacU3FD67DsCUhpRSlGgVSzJoFkdAo8TDl3hXKnV9lChoBmgJaA9DCG5oyk4/GBXAlIaUUpRoFUsyaBZHQKPEfzBAOax1fZQoaAZoCWgPQwiYv0LmyqALwJSGlFKUaBVLMmgWR0CjxkkDp1RtdX2UKGgGaAloD0MIJF8JpMQ+EcCUhpRSlGgVSzJoFkdAo8YI/C66KHV9lChoBmgJaA9DCKUV31D4DAvAlIaUUpRoFUsyaBZHQKPFyOskpqh1fZQoaAZoCWgPQwiAt0CC4mcNwJSGlFKUaBVLMmgWR0CjxYRwIdELdX2UKGgGaAloD0MIK6G7JM4KC8CUhpRSlGgVSzJoFkdAo8dUw1zhgnV9lChoBmgJaA9DCLSvPEhPoRXAlIaUUpRoFUsyaBZHQKPHFMotthx1fZQoaAZoCWgPQwg6yVaXU6INwJSGlFKUaBVLMmgWR0CjxtS/j81odX2UKGgGaAloD0MI88mK4eogDMCUhpRSlGgVSzJoFkdAo8aQbXHzYnV9lChoBmgJaA9DCB0ewvhpnAvAlIaUUpRoFUsyaBZHQKPIWRq46Op1fZQoaAZoCWgPQwiCOXr83uYXwJSGlFKUaBVLMmgWR0CjyBlAu7HydX2UKGgGaAloD0MIt/C8VGycEcCUhpRSlGgVSzJoFkdAo8fZMxoIwHV9lChoBmgJaA9DCIkHlE254hLAlIaUUpRoFUsyaBZHQKPHlN/vv0B1fZQoaAZoCWgPQwjhQh7BjZQPwJSGlFKUaBVLMmgWR0CjyVf0/W1/dX2UKGgGaAloD0MIKv2Es1vbEcCUhpRSlGgVSzJoFkdAo8kX8XN1Q3V9lChoBmgJaA9DCO+tSExQ0xXAlIaUUpRoFUsyaBZHQKPI16vaDf51fZQoaAZoCWgPQwiKHvgYrLgOwJSGlFKUaBVLMmgWR0CjyJMolUqAdX2UKGgGaAloD0MIe/fHe9WqDcCUhpRSlGgVSzJoFkdAo8pdPznRs3V9lChoBmgJaA9DCK5kx0YgXhLAlIaUUpRoFUsyaBZHQKPKHUEPlMh1fZQoaAZoCWgPQwiwV1hwP7ATwJSGlFKUaBVLMmgWR0Cjyd0qhDgJdX2UKGgGaAloD0MI5sqg2uDUEsCUhpRSlGgVSzJoFkdAo8mYtxuKoHV9lChoBmgJaA9DCNGUnX5QFwrAlIaUUpRoFUsyaBZHQKPLaXHBDXx1fZQoaAZoCWgPQwhE2zF1VwYQwJSGlFKUaBVLMmgWR0CjyymKQ7tBdX2UKGgGaAloD0MIHVn5ZTDGEcCUhpRSlGgVSzJoFkdAo8rpZ+x4ZHV9lChoBmgJaA9DCKK2DaMgiBDAlIaUUpRoFUsyaBZHQKPKpPw/gR91fZQoaAZoCWgPQwiJmBJJ9DIZwJSGlFKUaBVLMmgWR0CjzG8LKFIvdX2UKGgGaAloD0MIxTvAkxbuEMCUhpRSlGgVSzJoFkdAo8wvLLZBcHV9lChoBmgJaA9DCPuuCP63ohPAlIaUUpRoFUsyaBZHQKPL7vKlpGp1fZQoaAZoCWgPQwhuopbmVggCwJSGlFKUaBVLMmgWR0Cjy6p8neBQdX2UKGgGaAloD0MIJAnCFVAoEsCUhpRSlGgVSzJoFkdAo82Bu2qkunV9lChoBmgJaA9DCEgyq3e4fRPAlIaUUpRoFUsyaBZHQKPNQal1r7B1fZQoaAZoCWgPQwiW7UPecqUQwJSGlFKUaBVLMmgWR0CjzQGOlwcYdX2UKGgGaAloD0MIPL1SliGOE8CUhpRSlGgVSzJoFkdAo8y9oQFs6HV9lChoBmgJaA9DCI84ZAPpwh3AlIaUUpRoFUsyaBZHQKPOo/20zCV1fZQoaAZoCWgPQwjRWWYRii0UwJSGlFKUaBVLMmgWR0CjzmQpF1B/dX2UKGgGaAloD0MIsMivH2IDCsCUhpRSlGgVSzJoFkdAo84kLBsQ/XV9lChoBmgJaA9DCAMlBRbApBPAlIaUUpRoFUsyaBZHQKPN375VOsV1fZQoaAZoCWgPQwg+7fDXZI0RwJSGlFKUaBVLMmgWR0Cjz7soUi6hdX2UKGgGaAloD0MI26Z4XFT7EcCUhpRSlGgVSzJoFkdAo897LEDQq3V9lChoBmgJaA9DCLr0L0lluhfAlIaUUpRoFUsyaBZHQKPPOw4bS7Z1fZQoaAZoCWgPQwibkqzD0UUWwJSGlFKUaBVLMmgWR0Cjzvam4y44dX2UKGgGaAloD0MIHec24V4Z/L+UhpRSlGgVSzJoFkdAo9C+tCAtnXV9lChoBmgJaA9DCG7gDtQpLwrAlIaUUpRoFUsyaBZHQKPQfrUsnRd1fZQoaAZoCWgPQwilaybfbJMPwJSGlFKUaBVLMmgWR0Cj0D6eXiR5dX2UKGgGaAloD0MIXOMz2T/PEcCUhpRSlGgVSzJoFkdAo8/6E12q1nV9lChoBmgJaA9DCJHT1/M1SwTAlIaUUpRoFUsyaBZHQKPRvpKzzEt1fZQoaAZoCWgPQwgA5lq0AM0PwJSGlFKUaBVLMmgWR0Cj0X60hNdrdX2UKGgGaAloD0MIbHu7JTngDcCUhpRSlGgVSzJoFkdAo9E+m3vx6XV9lChoBmgJaA9DCETf3coSnRLAlIaUUpRoFUsyaBZHQKPQ+jQAuI11fZQoaAZoCWgPQwh5BaInZVIRwJSGlFKUaBVLMmgWR0Cj0rrC3w1BdX2UKGgGaAloD0MIsHQ+PEugEMCUhpRSlGgVSzJoFkdAo9J6qIacZ3V9lChoBmgJaA9DCK/uWGyTSg/AlIaUUpRoFUsyaBZHQKPSOrPt2LZ1fZQoaAZoCWgPQwgE5Euo4GARwJSGlFKUaBVLMmgWR0Cj0fYyoGY8dX2UKGgGaAloD0MICoDxDBoKEMCUhpRSlGgVSzJoFkdAo9PIJu2qk3V9lChoBmgJaA9DCJM4K6ImGhLAlIaUUpRoFUsyaBZHQKPTiIv8IiV1fZQoaAZoCWgPQwg0aOif4DIRwJSGlFKUaBVLMmgWR0Cj00iG34KydX2UKGgGaAloD0MIVaTC2EIwCMCUhpRSlGgVSzJoFkdAo9MEan7523V9lChoBmgJaA9DCLjJqDKMOwvAlIaUUpRoFUsyaBZHQKPU18ejmCB1fZQoaAZoCWgPQwhB1H0AUvsJwJSGlFKUaBVLMmgWR0Cj1JfOUt7KdX2UKGgGaAloD0MIC/FIvDyNFcCUhpRSlGgVSzJoFkdAo9RX+OwPiHV9lChoBmgJaA9DCHTtC+iFGwnAlIaUUpRoFUsyaBZHQKPUE4SYgJV1fZQoaAZoCWgPQwiY32ky400QwJSGlFKUaBVLMmgWR0Cj1fKLKmsOdX2UKGgGaAloD0MIRpiiXBrvEsCUhpRSlGgVSzJoFkdAo9WysQumJnV9lChoBmgJaA9DCAMn28AdWBbAlIaUUpRoFUsyaBZHQKPVcoc7yQR1fZQoaAZoCWgPQwivP4nPnWALwJSGlFKUaBVLMmgWR0Cj1S4M4LkTdX2UKGgGaAloD0MIQrKACdzKEsCUhpRSlGgVSzJoFkdAo9b7V4HHFXV9lChoBmgJaA9DCBmQvd79cQ7AlIaUUpRoFUsyaBZHQKPWu1rIo3J1fZQoaAZoCWgPQwgq4J7nT5sFwJSGlFKUaBVLMmgWR0Cj1nsiB5HFdX2UKGgGaAloD0MIu9OdJ56zCcCUhpRSlGgVSzJoFkdAo9Y21MM7VHV9lChoBmgJaA9DCEUpIVhV7wrAlIaUUpRoFUsyaBZHQKPYAzD4xlB1fZQoaAZoCWgPQwgb2gBsQIQQwJSGlFKUaBVLMmgWR0Cj18MBp5/tdX2UKGgGaAloD0MIrir7rgj+FMCUhpRSlGgVSzJoFkdAo9eC42CNCXV9lChoBmgJaA9DCByWBn5UAwXAlIaUUpRoFUsyaBZHQKPXPoUSIxh1fZQoaAZoCWgPQwiMuWsJ+WASwJSGlFKUaBVLMmgWR0Cj2QUkv9LpdX2UKGgGaAloD0MI9yLajqkbE8CUhpRSlGgVSzJoFkdAo9jE6gdwN3V9lChoBmgJaA9DCMnMBS6PVQ7AlIaUUpRoFUsyaBZHQKPYhIRRMvh1fZQoaAZoCWgPQwiEZWzoZp8PwJSGlFKUaBVLMmgWR0Cj2D/VqesgdX2UKGgGaAloD0MIyjUFMjs7EMCUhpRSlGgVSzJoFkdAo9ojbah6B3V9lChoBmgJaA9DCNQnucMm4hHAlIaUUpRoFUsyaBZHQKPZ411nuiN1fZQoaAZoCWgPQwiYFB+fkK0QwJSGlFKUaBVLMmgWR0Cj2aNDc/MXdX2UKGgGaAloD0MI36XUJePoEsCUhpRSlGgVSzJoFkdAo9lfctXgcnV9lChoBmgJaA9DCDSD+MCOvxDAlIaUUpRoFUsyaBZHQKPbJinYQJ51fZQoaAZoCWgPQwhXlX1XBD8WwJSGlFKUaBVLMmgWR0Cj2uY1xbSrdX2UKGgGaAloD0MIya8fYoN1EsCUhpRSlGgVSzJoFkdAo9qmBYmsvXV9lChoBmgJaA9DCLnF/NzQxBHAlIaUUpRoFUsyaBZHQKPaYZqEeyR1fZQoaAZoCWgPQwilZ3qJsewLwJSGlFKUaBVLMmgWR0Cj3CbGFSKndX2UKGgGaAloD0MIxLEubqMBB8CUhpRSlGgVSzJoFkdAo9vmvQnhKnV9lChoBmgJaA9DCA00n3O3GxHAlIaUUpRoFUsyaBZHQKPbpl+3H7x1fZQoaAZoCWgPQwjbaWtEMD4RwJSGlFKUaBVLMmgWR0Cj22Hq3VkMdX2UKGgGaAloD0MIpfYi2o4ZE8CUhpRSlGgVSzJoFkdAo900bYK6WnV9lChoBmgJaA9DCFERp5NsxRLAlIaUUpRoFUsyaBZHQKPc9Ge+VTt1fZQoaAZoCWgPQwi/8EqS53oOwJSGlFKUaBVLMmgWR0Cj3LRjJ+2FdX2UKGgGaAloD0MItHIvMCuUDsCUhpRSlGgVSzJoFkdAo9xv2GqPwXV9lChoBmgJaA9DCISfOIB+Xw3AlIaUUpRoFUsyaBZHQKPeS5MDfWN1fZQoaAZoCWgPQwgwmwDD8qcJwJSGlFKUaBVLMmgWR0Cj3guWSlnAdX2UKGgGaAloD0MIYi0+BcA4EcCUhpRSlGgVSzJoFkdAo93LK5kK/nV9lChoBmgJaA9DCGlSCrq9JBDAlIaUUpRoFUsyaBZHQKPdhq/ub7V1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (835 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -4.243986695958301, "std_reward": 1.0343328546552473, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-17T17:15:25.456833"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ccdbacb7a2cec2f404a2e6a4f42da6cb967fc1fd70552a932e05da6f28fec5c
|
3 |
+
size 3212
|